Influence of Surface Chemical Groups and Content of Carbon Nanotubes on Electrical Property of Epoxy Resin Composites

Article Preview

Abstract:

In this study, electrical properties of multi-walled carbon nanotubes (MWCNTs) reinforced epoxy resin composites were investigated, with respect to the method of dispersion, surfactants, content and chemical groups of CNTs. Experimental results show that chemical functionalization and surfactants improved the dispersion of CNTs in epoxy resin. Electrical conductivity of epoxy increased by two orders of magnitude with 0.5 wt% MWCNTs, while seven orders of magnitude with 2.0 wt% MWCNTs-NH2. The results also indicated that an effective electron transport channels formed in the composites with 0.5 wt% CNTs approximately.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-106

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Wang, R. Liang, B. Wang, et al. Dispersion and thermal conductivity of carbon nanotube composites. Carbon. 2009, 47(53-57).

DOI: 10.1016/j.carbon.2008.08.024

Google Scholar

[2] S. Wang, R. Liang, B. Wang, et al. Load-transfer in functionalized carbon nanotubespolymer composites. Chem Phys Lett. 2008, 457(371-375).

Google Scholar

[3] P. Guo, X.H. Chen, X.C. Gao, et al. Fabrication and mechanical properties of well-dispersed multiwalled carbon nanotubes/epoxy composites. Compos Sci Technol. 2007, 67(3331-3337).

DOI: 10.1016/j.compscitech.2007.03.026

Google Scholar

[4] S.M. Yuen, C.M. Chen, H.H. Wu, et al. Preparation and thermal, electrical, and morphological properties of multiwalled carbon nanotubeand epoxy composites. J Appl Polym Sci. 2007, 103(1272-1278).

DOI: 10.1002/app.25140

Google Scholar

[5] L. Guadagno, B. Vivo, A. Bartolomeo, et al. Effect of functionalization on the thermo-mechanical and electrical behavior of multi-wall carbon nanotubeepoxy. Carbon. 2011, 49(1919-1930).

DOI: 10.1016/j.carbon.2011.01.017

Google Scholar

[6] A. Moisala, Q. Li, I.A. Kinloch, et al. Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites. Compos Sci Technol. 2006, 66(1285-1288).

DOI: 10.1016/j.compscitech.2005.10.016

Google Scholar

[7] P.C. Ma, S.Y. Mo, B.Z. Tang, et al. Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon. 2010, 48(1824-1834).

DOI: 10.1016/j.carbon.2010.01.028

Google Scholar

[8] A.B. Sulong, N. Muhamad, J. Sahari, et al. Electrical conductivity behaviour of chemical functionalized MWCNTs epoxy nanocomposites. European Journal of Scientific Research. 2009, 1(29): 13-21.

Google Scholar

[9] I.D. Rosca, S.V. Hoa. Highly conductive multiwall carbon nanotube and epoxy composites produced by three-roll milling. Carbon. 2009, 47(1958-1968).

DOI: 10.1016/j.carbon.2009.03.039

Google Scholar

[10] J. Li, P.C. Ma, W.Z. Chow, et al. Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater. 2007, 17(3207-3215).

DOI: 10.1002/adfm.200700065

Google Scholar

[11] J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, et al. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer. 2003, 44(5893-5899).

DOI: 10.1016/s0032-3861(03)00539-1

Google Scholar

[12] W. Bauhofer, J.Z. Kovacs. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol. 2009, 69(1486-1498).

DOI: 10.1016/j.compscitech.2008.06.018

Google Scholar

[13] W. Bauhofer, J.Z. Kovacs. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol. 2009, 69(1486-1498).

DOI: 10.1016/j.compscitech.2008.06.018

Google Scholar

[14] L. Vaisman, G. Marom, H.G. Wagner. Dispersions of Surface‐Modified Carbon Nanotubes in Water‐Soluble and Water‐Insoluble Polymers. Adv Funct Mater. 2006, 16(357-363).

DOI: 10.1002/adfm.200500142

Google Scholar

[15] Y. Geng, M.Y. Liu, J. Li, et al. Effects of surfactant treatment on mechanical and electrical properties of CNTepoxy nanocomposites. Composites: Part A. 2008, 39(1876-1883).

Google Scholar

[16] P.C. Ma, N.A. Siddiqui, G. Maromb, et al. Review Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites: Part A. 2010, 41(1345-1367).

DOI: 10.1016/j.compositesa.2010.07.003

Google Scholar

[17] Y.J. Kim, T.S. Shin, H.D. Choi, et al. Electrical conductivity of chemically modified multiwalled carbon nanotube epoxy composites. Carbon. 2005, 43(23-30).

DOI: 10.1016/j.carbon.2004.08.015

Google Scholar

[18] F.H. Gojny, H.G. Wichmann, B. Fiedler, et al. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer. 2006, 47(2036-2045).

DOI: 10.1016/j.polymer.2006.01.029

Google Scholar