Preparation of Polyvinylidene Fluoride (PVDF) Triboelectric Nanogenerators with Different Polymer

Article Preview

Abstract:

Triboelectric nanogenerators have recently been used to harvest mechanical energy from surrounding environment which is of great significance in the field of energy conversion. Electrospinning provides a simple, low cost and versatile method for the generation of 1D nanostrucutures. Nanofiber membranes have many advantages over the commonly used dense film for designing the riboelectric nanogenerators, such as the low wear resistance caused from the internal and excellent external consistency of the electrospinning membranes. In this paper, we produce a variety of polymer films by electro-spinning, and fabricate Polyvinylidene Fluoride (PVDF) triboelectric nanogenerators with different polymer films afterwards. We except to explore the TEG power generation effect, and influencing factors, and then determine the best combination of the results of TEG (PVDF-PHBV). Such a flexible polymer TEG generates output voltage of up to 112 V at a power of 0.045W.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-95

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. L. Wang: Adv. Funct. Mater Vol. 18 (2008), p.3553.

Google Scholar

[2] Z. L. Wang, J. H. Song: Science Vol. 312 (2006), p.242.

Google Scholar

[3] J. F. Scott: Science Vol. 315 (2007), p.954.

Google Scholar

[4] X. Wang: Nano Energy Vol. 1 (2012), p.13.

Google Scholar

[5] Y. Qin, X. Wang, Z. L. Wang: Nature Vol. 451 (2008), p.809.

Google Scholar

[6] S. Min Kim, H. Kim, Y. Nam, S. Kim: AIP Advances Vol. 2 (2012), p.042174.

Google Scholar

[7] G. Zhu, A. C. Wang, Y. Liu, Y. Zhou, Z. L. Wang: Nano Lett Vol. 12 (2012), p.3086.

Google Scholar

[8] Z. -H. Lin, Y. Yang, J. M. Wu, Y. Liu, F. Zhang, Z. L. Wang: J. Phys. Chem. Lett Vol. 3 (2012), p.3599.

Google Scholar

[9] X. Q. Fang, J. X. Liu, V. Gupta: Nanoscale Vol. 5 (2013), p.1716.

Google Scholar

[10] Y. Hu, Y. Zhang, C. Xu, G. Zhu, Z. L. Wang: Nano Lett Vol. 10 (2010), p.5025.

Google Scholar

[11] G. Zhu, Z. -H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y. Zhou, Z. L. Wang: Nano Lett Vol . 13 (2013), p.847.

Google Scholar

[12] X. -S. Zhang, M. -D. Han, R. -X. Wang, F. -Y. Zhu, Z. -H. Li, W. Wang, H. -X. Zhang: Nano Lett. Vol. 13 (2013), p.1168.

Google Scholar

[13] Y. Xie, S. Wang, L. Lin, Q. Jing, Z. -H. Lin, S. Niu, Z. Wu, Z. L. Wang: Acs Nano Vol. 7 (2013), p.7119.

Google Scholar

[14] Q. Zhong, J. Zhong, B. Hu, Q. Hu, J. Zhou, Z. Wang: Energ. Environ. Sci Vol. 6 (2013), p.1779.

Google Scholar

[15] D. Li, Y. N. Xia: Adv. Mater Vol. 16 (2004), p.1151.

Google Scholar

[16] S. A. Theron, E. Zussman, A. L. Yarin: Polymer Vol. 45 (2004), p. (2017).

Google Scholar

[17] Y. Dzenis: Science Vol. 304 (2004), P. (1917).

Google Scholar

[18] N. Bhardwaj, S. C. Kundu: Biotechnol. Adv Vol. 28 (2010), p.325.

Google Scholar

[19] W. E. Teo, S. Ramakrishna: Nanotechnology Vol. 17 (2006), p.89.

Google Scholar

[20] M. Pokorny, V. Velebny: Rev. Sci. Instrum Vol. 82 (2011), p.055112.

Google Scholar