Design and Simulation of a Bending Actuator Based on Super-Aligned Carbon Nanotube/Polymer Composites

Article Preview

Abstract:

Super-aligned carbon nanotube films are carbon nanotube macrostructures which have excellent orientations. The bending actuator based on super-aligned carbon nanotube/polymer composites can make a significant controllable bending deformation under a very low DC voltage (< 700 V/m). In this paper, we explored how to make the thermal induced actuator reach maximal deformation. By theoretical modeling and simulation through Mathematica software, the relationship between free-end displacement of the actuator and actuator length, thickness (or thickness ratio) of two layers, difference of coefficient of thermal expansion between two layers, temperature variation and other parameters were studied. Simulation results showed that the deformation is greatly influenced by the thickness ratio of the two layers of the actuator. The deformation displacement reaches a maximum value with a specified thickness ratio. This study may provide valuable theoretical references for the experimental design of carbon nanotube composite actuators.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-112

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Krulevitch, A. P. Lee, P. B. Ramsey, J. C. Trevino, J. Hamilton, M. A. Northrup, Thin film shape memory alloy microactuators, Journal of Micromechanical Systems. 5(1996), 270-282.

DOI: 10.1109/84.546407

Google Scholar

[2] R. Andrews, M. C. Weisenberger, Carbon nanotube polymer composites, Current Opinion in Solid State and Materials Science. 8(2004), 31-37.

DOI: 10.1016/j.cossms.2003.10.006

Google Scholar

[3] M. Moniruzzaman, K. I. Winey, Polymer nanocomposites containing carbon nanotubes, Macromolecules. 39(2006), 5194-5205.

DOI: 10.1021/ma060733p

Google Scholar

[4] Q. F. Cheng, J. P. Wang, J. J. Wen, C. H. Liu, K. L. Jiang, Q. Q. Li, S. S. Fan, Carbon nanotube/epoxy composites fabricated by resin transfer molding, Carbon. 48(2010), 260-266.

DOI: 10.1016/j.carbon.2009.09.014

Google Scholar

[5] M. B. Bryning, M. F. Islam , J. M. Kikkawa, A. G. Yodh, Very low conductivity threshold in bulk isotropic single-walled carbon nanotube–epoxy composites, Advanced Materials. 17(2005), 1186-1191.

DOI: 10.1002/adma.200401649

Google Scholar

[6] H. Huang, C.H. Liu, Y. Wu, S. S. Fan, Aligned carbon nanotube composite films for thermal management, Advanced Materials. 17 (2005), 1652-1656.

DOI: 10.1002/adma.200500467

Google Scholar

[7] L. B. Qiu, X. M. Sun, Z. B. Yang, W. H. Guo, H. S. Peng, Preparation and application of aligned carbon nanotube/polymer composite material, Acta Chimica Sinica. 70(2012), 1523-1532.

DOI: 10.6023/a12030024

Google Scholar

[8] Y. L. Zhao, J. F. Stoddart, Noncovalent functionalization of single-walled carbon nanotubes, Accounts of Chemical Research. 42(2009), 1161-1171.

DOI: 10.1021/ar900056z

Google Scholar

[9] A. Javey, J. Guo, M. Paulsson, Q, Wang, D. Mann, M. Lundstrom, H. Dai, High-field quasiballistic transport in short carbon nanotubes, Physical Review Letters. 92(2004), 106804.

DOI: 10.1103/physrevlett.92.106804

Google Scholar

[10] P. J. F. Harris, Carbon nanotube composites, International Materials Reviews. 49(2004), 31-43.

Google Scholar

[11] Y. Hu, G. F. Wang, X. M. Tao, W. Chen, Low-voltage-driven sustainable weightlifting actuator based on polymer-nanotube composite, Macromolecular Chemistry and Physics. 212 (2011), 1671-1676.

DOI: 10.1002/macp.201100151

Google Scholar

[12] Y. Hu, W. Chen, Externally induced thermal actuation of polymer nanocomposites, Macromolecular Chemistry and Physics. 212 (2011), 992-998.

DOI: 10.1002/macp.201100068

Google Scholar

[13] L. Z. Chen, C. H. Liu , C. H. Hu, S. S. Fan, Electrothermal actuation based on carbon nanotube network in silicone elastomer, Applied Physics Letters. 92(2008), 263104.

DOI: 10.1063/1.2955513

Google Scholar

[14] L. Z. Chen, C. H. Liu , K. Liu, C. Z. Meng, C. H. Hu, J. P. Wang, S. S. Fan, High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites, ACS Nano. 5(2011), 1588-1593.

DOI: 10.1021/nn102251a

Google Scholar

[15] D. K. Seo, T. J. Kang , D. W. Kim, Y. H. Kim, Twistable and bendable actuator: a CNT/polymer sandwich structure driven by thermal gradient, Nanotechnology. 23(2012), 075501.

DOI: 10.1088/0957-4484/23/7/075501

Google Scholar

[16] A. Govindaraju, A. Chakraborty , C. Luo, Reinforcement of PDMS masters using SU-8 truss structures, Journal of Micromechanics and Microengineering. 15(2005), 1303.

DOI: 10.1088/0960-1317/15/6/023

Google Scholar

[17] L. Z. Chen, C. H. Liu, J. P. Wang, W. Zhang, C. H. Hu and S. S. Fan, Auxetic materials with large negative Poisson's ratios based on highly oriented carbon nanotube structures, Applied Physics Letters. 94 (2009), 253111.

DOI: 10.1063/1.3159467

Google Scholar

[18] X. B. Zhang, K. L. Jiang, C. Teng, P. Liu, L Zhang, J. Kong, T. H. Zhang, Q. Q. Li and S. S. Fan, Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays, Advanced Materials. 18(2006), 1505-1510.

DOI: 10.1002/adma.200502528

Google Scholar

[19] W. Riethmuller, W. Benecke, Thermally excited silicon microactuators, IEEE Transactions on Electron Devices. 35(1988), 758-763.

DOI: 10.1109/16.2528

Google Scholar

[20] K. Liu, C. Cheng , Z. T. Cheng, K. Wang, R. Ramesh, J. Q. Wu, Giant-amplitude, high-work density microactuators with phase transition activated nanolayer bimorphs, Nano Letters. 12(2012), 6302-6308.

DOI: 10.1021/nl303405g

Google Scholar