Structure and Electrochemical Properties of La1-xBaxCoO3 Powders as Negative Electrode Materials for Ni/MH Batteries

Article Preview

Abstract:

The perovskite-type oxides have a newly application for alkaline batteries due to the excellent cyclic performance. In this work, La1-xBaxCoO3 (x = 0.2, 0.4, 0.6) powders were prepared by a sol-gel method as negative electrode materials for Ni/MH batteries, and their phase structure and electrochemical properties were investigated in details. The effect of Ba substitution on electrochemical kinetic properties, including the exchange current density I0 and the hydrogen diffusion coefficient D, of La1-xBaxCoO3 electrodes were also evaluated. X-ray diffraction analysis shows that La1-xBaxCoO3 (x = 0.2, 0.4, 0.6) perovskite-type oxides consist of two phases, La0.5Ba0.5CoO3 and BaCoO2.70. The discharge capacities of La1-xBaxCoO3 negative electrodes tested at 40 mAg-1 are 65.6, 76.6 and 88.3 mAhg-1 when x = 0.2, 0.4 and 0.6, respectively. Among the electrodes, La0.8Ba0.2CoO3 electrode has the highest discharge capacity retention ratio of about 87% after 50 cycles at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-117

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Raju, M.V. Ananth, L. Vijayaraghavan, J. Power Sources 180 (2008) 830–835.

Google Scholar

[2] Y.F. Liu, H.G. Pan, M.X. Gao, Y.F. Zhu, Y.Q. Lei, Q.D. Wang, Electrochim. Acta 49 (2004) 545.

Google Scholar

[3] E.A. Kumar, M.P. Maiya, S.S. Murthy, B. Viswanathan, J. Alloys Comp. 476 (2009) 92–97.

Google Scholar

[4] M. Tliha, C. Khaldi, H. Mathlouthi, J. Lamloumi, A. Percheron-Guegan, J. Alloys Compd. 440 (2007) 323.

DOI: 10.1016/j.jallcom.2006.09.019

Google Scholar

[5] T. Sakai, H. Yoshinaga, H. Miyamura, N. Kuriyama, H. Ishikawa, J. Alloys Comp. 180 (1992) 37–54.

Google Scholar

[6] Y. Yang, Q. Sun, Y. -S. Li, H. Li, Z. -W. Fu, J. Electrochem. Soc. 158 (2011) B1211–B1216.

Google Scholar

[7] Y. -C. Lu, Z. Xu, H.A. Gasteiger, S. Chen, K. Hamad-Schifferli, Y. Shao-Horn, J. Am. Chem. Soc. 132 (2010) 12170–12171.

DOI: 10.1021/ja1036572

Google Scholar

[8] T.H. Yoon, Y.J. Park, Nanoscale Res. Lett. 7 (2012) 1e11.

Google Scholar

[9] T. Esaka, H. Sakaguchi, S. Kobayashi, Solid State Ionics 166 (2004) 351.

Google Scholar

[10] D. -K. Lim, H. -N. Im, J. Kim, S. -J. Song, J. Phys. Chem. Sol. 74 (2013) 115–120.

Google Scholar

[11] S.J. Song, E.D. Wachsman, S.E. Dorris, U. Balachandran, Solid State Ionics 149 (2002) 1.

Google Scholar

[12] K.D. Kreuer, Solid State Ionics 97 (1997) 1.

Google Scholar

[13] Hongge Pan, Shuai Ma, Jia Shen, Junjun Tan, Jilu Deng, Mingxia Gao. Int J Hydrogen Energy 2007; 32: 2949–56.

Google Scholar

[14] Xiangqian Shen, Yungui Chen, Mingda Tao, Chaoling Wu, Gang Deng, Zhenzhen Kang. Int J Hydrogen Energy 2009; 34: 2661–9.

DOI: 10.1016/j.ijhydene.2008.10.079

Google Scholar