Size Dependence of Evaporation Temperature by Bond Number Calculation

Article Preview

Abstract:

In this study, a model based on bond number calculation in a system was developed to predict size-dependent evaporation temperature of nanoparticles. This model, free of any adjustable parameters, can be utilized to predict the thermal stability for low dimensional materials. If the atomic structure of a nanoparticle is known, the size and shape-dependent bond number can be obtained. The cubooctahedral structure was taken as the shape of nanoparticles for simplicity. According to the established model, the evaporation temperature of nanoparticles is dependent not only on their size, but also on their atomic diameter. The results indicated that the evaporation temperature decreased with the decreasing size of free-standing nanoparticle. The theoretical predictions are consistent with the evidences of the experiments or molecular dynamic simulations for Au and Ag nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

96-100

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Schmid, M. Baumle, M. Geerkens, I. Helm, C. Osemann and T. Sawitowski, Chem. Soc. Rev. Vol. 28 (1999) p.179.

DOI: 10.1039/a801153b

Google Scholar

[2] A.I. Frenkel, C.W. Hills and R.G. Nuzzo, J. Phys. Chem. B Vol. 105 (2001) p.12689.

Google Scholar

[3] Q. Jiang, H.X. Shi and M. Zhao, J. Chem. Phys. Vol. 111 (1999) p.2176.

Google Scholar

[4] C.Q. Sun, Y. Wang, B.K. Tay, S. Li, H. Huang and Y.B. Zhang, J. Phys. Chem. B Vol. 106 (2002) p.10701.

Google Scholar

[5] Ph. Buffat and J. -P. Borel, Phys. Rev. A Vol. 13 (1976) p.2287.

Google Scholar

[6] Q. Jiang, J.C. Li and B.Q. Chi, Chem. Phys. Lett. Vol. 366 (2002) p.551.

Google Scholar

[7] K.K. Nanda, Appl. Phys. Lett. Vol. 87 (2005) p.121909.

Google Scholar

[8] W.H. Qi and M.P. Wang, Mater. Chem. Phys. Vol. 88 (2004) p.280.

Google Scholar

[9] Y.F. Zhu, J.S. Lian and Q. Jiang, J. Phys. Chem. C Vol. 113 (2009) p.16896.

Google Scholar

[10] W.H. Qi, M.P. Wang, M. Zhou, X.Q. Shen and X.F. Zhang, J. Phys. Chem. Solids Vol. 67 (2006) p.851.

Google Scholar

[11] H. Li, P.D. Han, X.B. Zhang and M. Li, Mater. Chem. Phys. Vol. 137 (2013) p.1007.

Google Scholar

[12] D. Liu, J.S. Lian and Q. Jiang, J. Phys. Chem. C Vol. 113 (2009) p.1168.

Google Scholar

[13] Q. Jiang, H.M. Lu and M. Zhao, J. Phys. Condens Matter Vol. 16 (2004) p.521.

Google Scholar

[14] M. Attarian Shandiz, A. Safaei, S. Sanjabi and Z.H. Barber, Solid State Commun. Vol. 145 (2008) p.432.

DOI: 10.1016/j.ssc.2007.12.021

Google Scholar

[15] M. Mirjalili and J. Vahdati-Khaki, J. Phys. Chem. Solids Vol. 69 (2008) p.2116.

Google Scholar

[16] H. Li, M. Zhao and Q. Jiang, J. Phys. Chem. C Vol. 113 (2009) p.7594.

Google Scholar

[17] Information on http: /www. webelement. com.

Google Scholar

[18] K.K. Nanda, A. Maisels, F.E. Kruis, H. Fissan and S. Stappert, Phys. Rev. Lett. Vol. 91 (2003) p.106102.

DOI: 10.1103/physrevlett.91.106102

Google Scholar