[1]
C.H. Mi, G.S. Cao, X.B. Zhao, New development of anode in lithium-ion batteries[J]. Chinese Journal of Power Sources, 28(2004) 180-183.
Google Scholar
[2]
H.P. Zhang, L.J. Fu, H.Q. Wu, Research progress in anode materials for Li-ion batteries [J], Battery Bimonthly, 35(2005) 274-275.
Google Scholar
[3]
P.J. Zuo, G.P. Yin, Y.L. Ma, Electrochemical stability of silicon/carbon composite anode for lithium ion batteries [J]. Electrochimica Acta, 52( 2007) 4878-4883.
DOI: 10.1016/j.electacta.2006.12.061
Google Scholar
[4]
M.L. Terranova, S. Orlanducci, M. Rossi, et al. Si/C hybrid nanostructures for Li-ion anodes: An overview Journal of Power Sources, 246(2014) 167-177.
DOI: 10.1016/j.jpowsour.2013.07.065
Google Scholar
[5]
H.Y. Wang G.P. Yin H.Y. Xu, Properties of silicon/graphite/carbon anode for Li-ion battery[J]. Journal of Harbin Institute of Technology, 21(2010) 1916-(1920).
Google Scholar
[6]
P. Suresh, A.K. Shukla, N. Munichandraiah, Synthesis and characterization of LiFeO2 and LiFe0. 9Co0. 1O2 as cathode material for Li-ion cells [J]. J. Power Sources, 159(2006) 1395-1400.
DOI: 10.1016/j.jpowsour.2005.12.034
Google Scholar
[7]
T. Zhang, L.J. Fu, J. Gao, et al., Nanosized tin anode prepared by laser-induced vapor deposition for lithium ion battery [J], Journal of Power Sources, 1749(2007) 770-773.
DOI: 10.1016/j.jpowsour.2007.06.231
Google Scholar
[8]
M. Holzapfel, H. Buqa, F. Krumeich, et al. Chemical Vapor Deposited Silicon∕Graphite Compound Material as Negative Electrode for Lithium-Ion Batteries [J], Electrochemical and Solid State Letters, (2005)8 A516-A520.
DOI: 10.1149/1.2030448
Google Scholar
[9]
J. Hassoun, S. Panero, P. Simon, et al. High-rate, long-life Ni-Sn nanostructured electrodes for lithium-ion batteries[J]. Adv. Mater. 19(2007) 1632-1635.
DOI: 10.1002/adma.200602035
Google Scholar
[10]
R. Teki, M.K. Datta, R. Krishnan, et al. Nanostructured silicon anodes for lithium ion rechargeable batteries [J]. Adv. Mater. 20(2009) 2236-2242.
DOI: 10.1002/smll.200900382
Google Scholar
[11]
C.K. Chan, X.F. Zhang, Y. Cui, High capacity Li ion battery anodes using Genaowires [J]. NanoLett, 2008, 8: 307-309.
Google Scholar
[12]
L.F. Cui, Y. Yang, C.M. Hsu, Y. Cui, Carbon-Silicon Core-Shell Nanowires as High capacity electrode for lithium ion batteries[J]. Nano Lett. 9(2009) 3370-3374.
DOI: 10.1021/nl901670t
Google Scholar
[13]
M.M. Ren, Z. Zhou, X.P. Gao, Core-Shell Material for Lithium Ion Batteries [J]. Progress in Chemistry, 20(2008) 771-777.
Google Scholar
[14]
X. Chen, K.Y. Kai, Y. Li, M.Y. Lu, Synthesis and electrochemical performance of ball-in-ball structure LiFePO4/C [J], Battery Bimonthly, 43(2013) 136-138.
Google Scholar
[15]
G. Zhang, L. Yu, H.B. Wu, et al., Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries [J], Adv. Mater. 24(2012) 4609-4613.
DOI: 10.1002/adma.201201779
Google Scholar
[16]
M. Hibino, M. Nakamura, Y. Kamitaka, et al., Improvement of cycle life of spinel type of lithium manganese oxide by addition of other spinel compounds during synthesis [J], Solid State Ionics, 177(2006) 2653-3656.
DOI: 10.1016/j.ssi.2006.03.024
Google Scholar