Sintering Properties of Apatite-Type Lanthanum Silicate Electrolytes

Article Preview

Abstract:

The sintering properties of appetite-type lanthanum silicate La10Si6O27prepared by sol-gel process were studied. The precursor powder was sintered by one-step sintering (OSS) process, two-step sintering (TSS) process and spark-plasma sintering (SPS) process. The phase structure, microstructure, relative density, thermal expansion properties, electrochemical properties of the samples were investigated by means of the techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), Archimedes method, dilatometer, and AC impedance spectroscopy. The experimental results show that the samples sintered by SPS process can decrease the sintering temperature, shorten the sintering time, increase the density, and reduce the particle size. The appetite-type lanthanum silicate La10Si6O27 sintered by SPS process shows better sintering properties than of sintered by OSS process and TSS process, which can beneficial to the thermal expansion properties and conductivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-70

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Talebi, M. Haji, B. Raissi and A. Maghsoudipour, YSZ electrolyte coating on NiO YSZ composite by electrophoretic deposition for solid oxide fuel cells (SOFCs), Int. J. Hydrogen. Energ. 35 (2010) 9455-9459.

DOI: 10.1016/j.ijhydene.2010.05.021

Google Scholar

[2] Y. Gong, W.J. Ji, B. Xie and H.Q. Wang, Effect of YSZ electrolyte surface modification on the performance of LSM/YSZ composite cathode, Solid State Ionics 192 (2011) 505-509.

DOI: 10.1016/j.ssi.2010.05.055

Google Scholar

[3] V.V. Lakshmi, R. Bauri, A.S. Gandhi and S. Paul, Synthesis and characterization of nanocrystalline ScSZ electrolyte for SOFCs, Int. J. Hydrogen. Energ. 36 (2011) 14936-14942.

DOI: 10.1016/j.ijhydene.2011.02.139

Google Scholar

[4] H.G. Shi, R. Ran and Z.P. Shao, Wet powder spraying fabrication and performance optimization of IT-SOFCs with thin-film ScSZ electrolyte, Int. J. Hydrogen. Energ. 37 (2012) 1125-1132.

DOI: 10.1016/j.ijhydene.2011.02.077

Google Scholar

[5] J. Huang, F. Xie, C. Wang and Z. Mao, Development of solid oxide fuel cell materials for intermediate-to-low temperature operation, Int. J. Hydrogen. Energ. 37 (2012) 877-883.

DOI: 10.1016/j.ijhydene.2011.04.030

Google Scholar

[6] J. Hormes, M. Pantelouris and G.B. Balazs, X-ray absorp-tion near edge structure (XANES) measurements of ceria-based solid electrolytes, Solid State Ionics 136-137 (2000) 945-954.

DOI: 10.1016/s0167-2738(00)00533-6

Google Scholar

[7] O. Monnereau, L. Tortet and P. Llewellyn, Synthesis of Bi2O3 by Controlled Transformation Rate Thermal Analysis: a New Route for This Oxide, Solid State Ionics 157 (2003) 163-169.

DOI: 10.1016/s0167-2738(02)00204-7

Google Scholar

[8] P. Datta, P. Majewski and F. Aldinger, Synthesis and microstructural characterization of Sr- and Mg-substituted LaGaO3 solid electrolyte Mater, Chem. Phys. 102 (2007) 240-244.

DOI: 10.1016/j.matchemphys.2006.12.010

Google Scholar

[9] D. Marrero-López, J.C. Ruiz-Morales and J. Peña-Martínez, Influence of phase segregation on the bulk and grain boundary conductivity of LSGM electrolytes, Solid State Ionics 186 (2011) 44-52.

DOI: 10.1016/j.ssi.2011.01.015

Google Scholar

[10] S. Nakayama, M. Sakamato, Electrical properties of new type high oxide ionic conductor RE10Si6O27 (RE = La, Pr, Nd, Sm, Gd, Dy), J. Eur. Ceram. Soc. 18 (1998) 1413-1418.

DOI: 10.1016/s0955-2219(98)00032-6

Google Scholar

[11] J.E.H. Sansom, A. Najib and P. R Slater, Oxide ion conductivity in mixed Si/Ge-based apatite-type systems, Solid State Ionics 175 (2004) 353-355.

DOI: 10.1016/j.ssi.2003.12.030

Google Scholar

[12] H. Yoshioka, Oxide ionic conductivity of apatite-type lanthanum silicates, J. Alloy Compd. 408-412 (2006) 649-652.

DOI: 10.1016/j.jallcom.2004.12.180

Google Scholar

[13] B. Li, J. Liu, Y.X. Hu and Z.X. Huang, Preparation and characterization of La9. 33Si6O26 powders by molten salt method for solid electrolyte application, J. Alloy Compd. 509 (2011) 3172-3176.

DOI: 10.1016/j.jallcom.2010.10.215

Google Scholar

[14] M.M. Vieira, J.C. Oliveira and A.L. Shaula, Lanthanum silicate thin films for SOFC electrolytes synthesized by magnetron sputtering and subsequent annealing, Surf. Coat. Tech. 206 (2012) 3316-3322.

DOI: 10.1016/j.surfcoat.2012.01.042

Google Scholar

[15] C. Tian, J. Liu, J. Cai and Y Zeng, Direct synthesis of La9. 33Si6O26 ultrafine powder via sol-gel self-combustion method, J. Alloy Compd. 458 (2008) 378-382.

DOI: 10.1016/j.jallcom.2007.03.128

Google Scholar

[16] J.E.H. Sansom, D. Richings and P. R. Slater, A powder neutron diffraction study of the oxide-ion-conducting apatite-type phases, La9. 33Si6O26 and La8Sr2Si6O26, Solid State Ionics 139 (2001) 205-210.

DOI: 10.1016/s0167-2738(00)00835-3

Google Scholar

[17] S. Nakayama, H. Yoshikatsu and K Yuki, Effects of cation- or oxide ion-defect on conductivities of apatite-type La-Ge-O system ceramics, Solid State Ionics 170 (2004) 219-223.

DOI: 10.1016/j.ssi.2004.02.023

Google Scholar

[18] S. Nakayama, M. Sakamoto, Ionic conductivities of apatite-type LaX(GeO4)6O1. 5X−12 (X=8-9. 33) polycrystal, s J. Mater. Sci. Lett. 20 (2001) 1627-1629.

Google Scholar

[19] B. Li, W. Liu, W. Pan, Synthesis and electrical properties of apatite-type La10Si6O27, J. Power Sources 195 (2010) 2196-2201.

DOI: 10.1016/j.jpowsour.2009.10.088

Google Scholar

[20] Q. Zhu, T. Jin and Y. Wang, Thermal expansion behavior and chemical compatibility of BaxSr1−xCo1−yFeyO3−δ with 8YSZ and 20GDC, Solid State Ionics 177 (2006) 1199-1204.

DOI: 10.1016/j.ssi.2006.04.029

Google Scholar