[1]
T. Talebi, M. Haji, B. Raissi and A. Maghsoudipour, YSZ electrolyte coating on NiO YSZ composite by electrophoretic deposition for solid oxide fuel cells (SOFCs), Int. J. Hydrogen. Energ. 35 (2010) 9455-9459.
DOI: 10.1016/j.ijhydene.2010.05.021
Google Scholar
[2]
Y. Gong, W.J. Ji, B. Xie and H.Q. Wang, Effect of YSZ electrolyte surface modification on the performance of LSM/YSZ composite cathode, Solid State Ionics 192 (2011) 505-509.
DOI: 10.1016/j.ssi.2010.05.055
Google Scholar
[3]
V.V. Lakshmi, R. Bauri, A.S. Gandhi and S. Paul, Synthesis and characterization of nanocrystalline ScSZ electrolyte for SOFCs, Int. J. Hydrogen. Energ. 36 (2011) 14936-14942.
DOI: 10.1016/j.ijhydene.2011.02.139
Google Scholar
[4]
H.G. Shi, R. Ran and Z.P. Shao, Wet powder spraying fabrication and performance optimization of IT-SOFCs with thin-film ScSZ electrolyte, Int. J. Hydrogen. Energ. 37 (2012) 1125-1132.
DOI: 10.1016/j.ijhydene.2011.02.077
Google Scholar
[5]
J. Huang, F. Xie, C. Wang and Z. Mao, Development of solid oxide fuel cell materials for intermediate-to-low temperature operation, Int. J. Hydrogen. Energ. 37 (2012) 877-883.
DOI: 10.1016/j.ijhydene.2011.04.030
Google Scholar
[6]
J. Hormes, M. Pantelouris and G.B. Balazs, X-ray absorp-tion near edge structure (XANES) measurements of ceria-based solid electrolytes, Solid State Ionics 136-137 (2000) 945-954.
DOI: 10.1016/s0167-2738(00)00533-6
Google Scholar
[7]
O. Monnereau, L. Tortet and P. Llewellyn, Synthesis of Bi2O3 by Controlled Transformation Rate Thermal Analysis: a New Route for This Oxide, Solid State Ionics 157 (2003) 163-169.
DOI: 10.1016/s0167-2738(02)00204-7
Google Scholar
[8]
P. Datta, P. Majewski and F. Aldinger, Synthesis and microstructural characterization of Sr- and Mg-substituted LaGaO3 solid electrolyte Mater, Chem. Phys. 102 (2007) 240-244.
DOI: 10.1016/j.matchemphys.2006.12.010
Google Scholar
[9]
D. Marrero-López, J.C. Ruiz-Morales and J. Peña-Martínez, Influence of phase segregation on the bulk and grain boundary conductivity of LSGM electrolytes, Solid State Ionics 186 (2011) 44-52.
DOI: 10.1016/j.ssi.2011.01.015
Google Scholar
[10]
S. Nakayama, M. Sakamato, Electrical properties of new type high oxide ionic conductor RE10Si6O27 (RE = La, Pr, Nd, Sm, Gd, Dy), J. Eur. Ceram. Soc. 18 (1998) 1413-1418.
DOI: 10.1016/s0955-2219(98)00032-6
Google Scholar
[11]
J.E.H. Sansom, A. Najib and P. R Slater, Oxide ion conductivity in mixed Si/Ge-based apatite-type systems, Solid State Ionics 175 (2004) 353-355.
DOI: 10.1016/j.ssi.2003.12.030
Google Scholar
[12]
H. Yoshioka, Oxide ionic conductivity of apatite-type lanthanum silicates, J. Alloy Compd. 408-412 (2006) 649-652.
DOI: 10.1016/j.jallcom.2004.12.180
Google Scholar
[13]
B. Li, J. Liu, Y.X. Hu and Z.X. Huang, Preparation and characterization of La9. 33Si6O26 powders by molten salt method for solid electrolyte application, J. Alloy Compd. 509 (2011) 3172-3176.
DOI: 10.1016/j.jallcom.2010.10.215
Google Scholar
[14]
M.M. Vieira, J.C. Oliveira and A.L. Shaula, Lanthanum silicate thin films for SOFC electrolytes synthesized by magnetron sputtering and subsequent annealing, Surf. Coat. Tech. 206 (2012) 3316-3322.
DOI: 10.1016/j.surfcoat.2012.01.042
Google Scholar
[15]
C. Tian, J. Liu, J. Cai and Y Zeng, Direct synthesis of La9. 33Si6O26 ultrafine powder via sol-gel self-combustion method, J. Alloy Compd. 458 (2008) 378-382.
DOI: 10.1016/j.jallcom.2007.03.128
Google Scholar
[16]
J.E.H. Sansom, D. Richings and P. R. Slater, A powder neutron diffraction study of the oxide-ion-conducting apatite-type phases, La9. 33Si6O26 and La8Sr2Si6O26, Solid State Ionics 139 (2001) 205-210.
DOI: 10.1016/s0167-2738(00)00835-3
Google Scholar
[17]
S. Nakayama, H. Yoshikatsu and K Yuki, Effects of cation- or oxide ion-defect on conductivities of apatite-type La-Ge-O system ceramics, Solid State Ionics 170 (2004) 219-223.
DOI: 10.1016/j.ssi.2004.02.023
Google Scholar
[18]
S. Nakayama, M. Sakamoto, Ionic conductivities of apatite-type LaX(GeO4)6O1. 5X−12 (X=8-9. 33) polycrystal, s J. Mater. Sci. Lett. 20 (2001) 1627-1629.
Google Scholar
[19]
B. Li, W. Liu, W. Pan, Synthesis and electrical properties of apatite-type La10Si6O27, J. Power Sources 195 (2010) 2196-2201.
DOI: 10.1016/j.jpowsour.2009.10.088
Google Scholar
[20]
Q. Zhu, T. Jin and Y. Wang, Thermal expansion behavior and chemical compatibility of BaxSr1−xCo1−yFeyO3−δ with 8YSZ and 20GDC, Solid State Ionics 177 (2006) 1199-1204.
DOI: 10.1016/j.ssi.2006.04.029
Google Scholar