Study of Structural and Optical Properties of Cu2ZnSnS4 and Cu2ZnGeS4 Thin Films Synthesized by Sulfurization of Stacked Metallic Layers

Article Preview

Abstract:

Cu2ZnSnS4 and Cu2ZnGeS4 thin films made from the earth abundant and non-toxic materials are quaternary semiconducting compounds which have received increasing interest for solar cells applications. Cu2ZnSnS4 and Cu2ZnGeS4 thin films have been synthesized by sulfurization of radio frequency magnetron sputtered precursors. The structural and optical properties of the thin films have been investigated and discussed. The result of X-ray diffraction demonstrates that the Cu2ZnSnS4 and Cu2ZnGeS4 thin films have kesterite (KS; space group I) crystal structure. An obvious blue shift is observed in the Raman spectra as smaller Ge replaces Sn. It is due to the fact that the radius of Ge cation is smaller than that of Sn cation , which results in the shrink of the lattice. Further transmission spectra demonstrate that the values of band gap for CZTS and CZGS thin films are 1.54 eV and 1.98 eV, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

44-48

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Dhruba, Khadka and K. JunHo: CrystEngComm. 15 (2013), pp.10500-10509.

Google Scholar

[2] H. Katageri, K. Saithh, T. Washio, H. Shinohara, T. Kurumasani and S. Miyajima: Sol. Energy Mater. Sol. Cells. Vol. 65 (2001), p.141.

Google Scholar

[3] J. He, L. Sun, S. Chen, Y. Chen, P. Yang, J. Chu: J. Alloy. Com. Vol. 511 (2012), pp.129-132.

Google Scholar

[4] W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu and D. B. Mitzi: Adv. Energy Mater. Vol. 4 (2013), p.1301465.

DOI: 10.1002/aenm.201301465

Google Scholar

[5] Q. Guo, G. M. Ford, W. C. Yang, C. J. Hages, H. W. Hillhouse and R. Agrawal: Sol. En. Mat. Vol. 105 (2012), pp.132-136.

Google Scholar

[6] S. Bag, O. Gunawan, T. Gokmen, Y. Zhu and D. B. Mitzi: Chem. Matter. Vol. 24 (2012), pp.4588-4593.

Google Scholar

[7] S. G. Lee, J. Kim, H. S. Woo, Y. Jo, A. I. Inamdar, S.M. Pawar, H. S. Kim, W. J. and H. S. Im: Curr. Appl. Phys. Vol. 14 (2014), pp.254-258.

Google Scholar

[8] D. B. Khadka and J. Kim: CrystEngCom. Vol. 15 (2013), pp.10500-10509.

Google Scholar

[9] B. D. Cullity and S. R. Stock, Elementals of X-Ray diffraction (Prentice Hall, New Jersey 2001).

Google Scholar

[10] J. He, L. Sun, K. Zhang, W. Wang, J. Jiang, Y. Chen, P. Yang, J. Chu: Appl. Surf. Sci. Vol. 264 (2013), pp.133-138.

Google Scholar

[11] K. Zong, S. H. Lu, H. Wang, Y. X. Sun, H. J. Zheng, J. B. Liu and H. Yan: CrystEngCom. Vol. 15 (2013), pp.6942-6947.

Google Scholar

[12] I. V. Pankove, Optical processes in semiconductors (Dover Inc., New York 1975).

Google Scholar

[13] L. Shi, P. Yin, H. Zhu and Q. Li: Langmuir. Vol. 29 (2013), pp.8713-8717.

Google Scholar

[14] S. Y. Chen, X. G. Gong, A. Walsh and S. H. Wei: Appl. Phys. Lett. Vol. 94 (2009), p.041903.

Google Scholar

[15] S. Y. Chen, X. G. Gong, A. Walsh and S. H. Wei: Phys. Rev. B. Vol. 79 (2009), p.165211.

Google Scholar

[16] S. Y. Chen, A. Walsh, Y. Luo, J. H. Yang, X. G. Gong and S. H. Wei: Phys. Rev. B: Condens. Matter Mater. Phys. Vol. 82 (2010), p.195203.

Google Scholar