Structural and Optical Properties of Cu2MnSnS4 Thin Film Fabricated by Sol-Gel Technique

Article Preview

Abstract:

Cu2MnSnS4 thin film was successfully prepared by a sol-gel technique on soda lime glass substrate from metal salts and thiourea. The structural and morphological properties of the fabricated film were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and atomic force microscopy. The combination of the X-ray diffraction results and Raman spectroscopy reveal that this obtained layer is composed by Cu2MnSnS4 phase and has a stannite structure with preferential orientation along the (112) direction. The scanning electron microscopy and atomic force microscopy results show that the synthesized thin film is smooth and compact without any visible cracks or pores. The band gap of the Cu2MnSnS4 thin film is about 1.29 eV determined by the UV-vis-NIR absorption spectra measurement, which indicates it has potential applications in solar cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-43

Citation:

Online since:

March 2015

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (version 36). Progress in Photovoltaics: Research and Applications, 2010, 18(5): 346-352.

DOI: 10.1002/pip.1021

Google Scholar

[2] Green M A. Estimates of Te and In prices from direct mining of known ores. Progress in Photovoltaics: Research and Applications, 2009, 17(5): 347-359.

DOI: 10.1002/pip.899

Google Scholar

[3] Matsushita H, Maeda T, Katsui A, et al. Thermal analysis and synthesis from the melts of Cu-based quaternary compounds Cu-III-IV-VI4 and Cu2-II-IV-VI4. Journal of crystal growth, 2000, 208(1-4): 416-422.

DOI: 10.1016/s0022-0248(99)00468-6

Google Scholar

[4] Meng X, Deng H, He J, et al. Synthesis of Cu2FeSnSe4 thin film by selenization of RF magnetron sputtered precursor. Materials Letters, 2014, 117: 1-3.

DOI: 10.1016/j.matlet.2013.11.107

Google Scholar

[5] Katagiri H, Saitoh K, Washio T, et al. Development of thin film solar cell based on Cu2ZnSnS4 thin films. Solar Energy Materials and Solar Cells, 2001, 65(1): 141-148.

DOI: 10.1016/s0927-0248(00)00088-x

Google Scholar

[6] Wang, W., Winkler, M. T., Gunawan, O., Gokmen, T., Todorov, T. K., Zhu, Y., Mitzi, D. B. (2014). Device characteristics of CZTSe thin film solar cells with 12. 6% efficiency. Advanced Energy Materials, 4: 1301465. doi: 10. 1002/aenm. 201301465.

DOI: 10.1002/aenm.201301465

Google Scholar

[7] Cui Y, Deng R, Wang G, et al. A general strategy for synthesis of quaternary semiconductor Cu2MSnS4 (M= Co2+, Fe2+, Ni2+, Mn2+) nanocrystals. Journal of Materials Chemistry, 2012, 22(43): 23136-23140.

DOI: 10.1039/c2jm33574c

Google Scholar

[8] Fries T, Shapira Y, Palacio F, et al. Magnetic ordering of the antiferromagnet Cu2MnSnS4 from magnetization and neutron-scattering measurements. Physical Review B, 1997, 56(9): 5424.

Google Scholar

[9] Fukushima T, Yamauchi K, Picozzi S. magnetically induced ferroelectricity in Cu2MnSnS4 and Cu2MnSnSe4. Physical Review B, 2010, 82(1): 014102.

Google Scholar

[10] Koo H J. Density functional investigation of the magnetic superstructure of Cu2MnSnS4. Solid State Communications, 2012, 152(17): 1683-1685.

DOI: 10.1016/j.ssc.2012.04.075

Google Scholar

[11] Wang S, Gao Q, Wang J. Thermodynamic analysis of decomposition of thiourea and thiourea oxides. The Journal of Physical Chemistry B, 2005, 109(36): 17281-17289.

DOI: 10.1021/jp051620v

Google Scholar

[12] Wangperawong A, King J S, Herron S M, et al. Aqueous bath process for deposition of Cu2ZnSnS4 photovoltaic absorbers. Thin Solid Films, 2011, 519(8): 2488-2492.

DOI: 10.1016/j.tsf.2010.11.040

Google Scholar

[13] Himmrich M, Haeuseler H. Far infrared studies on stannite and wurtz-stannite type compounds. Spectrochimica Acta Part A: Molecular Spectroscopy, 1991, 47(7): 933-942.

DOI: 10.1016/0584-8539(91)80283-o

Google Scholar

[14] He J, Sun L, Ding N, et al. Single-step preparation and characterization of Cu2ZnSn(SxSe1-x)4 thin films deposited by pulsed laser deposition method. Journal of alloys and compounds, 2012, 529: 34-37.

DOI: 10.1016/j.jallcom.2012.03.065

Google Scholar

[15] Juškėnas R, Kanapeckaitė S, Karpavičienė V, et al., A two-step approach for electrochemical deposition of Cu-Zn-Sn and Se precursors for CZTSe solar cells. Solar Energy Materials and Solar Cells, 2012, 101: 277-282.

DOI: 10.1016/j.solmat.2012.02.007

Google Scholar

[16] Khadka D B, Kim J H. Study of structural and optical properties of kesterite Cu2ZnGeX4 (X=S, Se) thin films synthesized by chemical spray pyrolysis. Crystal Engineering, 2013, 15(48): 10500-10509.

DOI: 10.1039/c3ce41387j

Google Scholar

[17] I. V. Pankove, Optical processes in semiconductors, Dover Inc., New York, (1975).

Google Scholar

[18] Woo K, Kim Y, Yang W, et al. Band-gap-graded Cu2ZnSn(S1-x, Sex)4 Solar Cells Fabricated by an Ethanol-based, Particulate Precursor Ink Route. Scientific reports, 2013, 3.

DOI: 10.1038/srep03069

Google Scholar

[19] Leitao J P, Santos N M, Fernandes P A, et al. Study of optical and structural properties of Cu2ZnSnS4 thin films. Thin Solid films, 2011, 519(21): 7390-7393.

DOI: 10.1016/j.tsf.2010.12.105

Google Scholar