Controlled Growth of ZnO with Different Morphologies on Zn Foils by a Simple Aqueous Solution Method

Article Preview

Abstract:

Nanostructured ZnO with versatile morphologies has great potential applications in many fields. In this work, ZnO materials with different morphologies were deposited on Zn foils by a simple aqueous solution method, and the shape of ZnO can be controlled by the concentration of Cl ions in the solution. Rods, spheres and platelets were obtained respectively with the concentration of Cl ions increase. The competition between Cl ions and growth units in the solution results the formation of ZnO materials with different morphologies. At the same time, the preferential orientation of the crystal plane is also changed by the concentration of Cl ions. The different morphologies of ZnO grown form this kind of solution method was also explained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-18

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X.B. Tang, G.M. Li, S.M. Zhou, Ultraviolet Electroluminescence of light-emitting diodes based on single n-ZnO/p-AlGaN heterojunction nanowires, Nano Lett. 13 (2013) 5046-5050.

DOI: 10.1021/nl401941g

Google Scholar

[2] R. Gazia, P. Motto, S. Stassi, A. Sacco, A. Virga, A. Lamberti, G. Canavese, Photodetection and piezoelectric response from hard and flexible sponge-like ZnO-based structures, Nano Energy. 2 (2013) 1294-1302.

DOI: 10.1016/j.nanoen.2013.06.010

Google Scholar

[3] X. Li, Y. Chang, Y. Long, Influence of Sn doping on ZnO sensing properties for ethanol and acetone, Mater. Sci. Eng. C. 32 (2012) 817-821.

DOI: 10.1016/j.msec.2012.01.032

Google Scholar

[4] X. Yu, X. Yu, J. Zhang, Z. Hu, G. Zhao, Y. Zhao, Effective light trapping enhanced near-UV/blue light absorption in inverted polymer solar cells via sol-gel textured Al-doped ZnO buffer layer, Solar Energy Materials and Solar Cells. 121 (2014).

DOI: 10.1016/j.solmat.2013.10.032

Google Scholar

[5] J. Antony, Y. Qiang, Cathodoluminescence from a device of carbon nanotube-field emission display with ZnO nanocluster phosphor, Nanotechnology. 18 (2007) 295703-1-4.

DOI: 10.1088/0957-4484/18/29/295703

Google Scholar

[6] Y. Wang, X. Zhang, H. Zhang, Q. Huang, F. Yang, X. Meng, C. Wei, Y. Zhao, Room temperature fabrication of highly textured hydrogen and tungsten co-doped ZnO film for solar cell applications, Solar Energy Materials and Solar Cells. 121 (2014).

DOI: 10.1016/j.solmat.2013.10.025

Google Scholar

[7] H. Zhang, Y. Long, Z. Li, B. Sun, Fabrication of comb-like ZnO nanostructures for room-temperature CO gas sensing application, Vacuum. 101 (2014) 113-117.

DOI: 10.1016/j.vacuum.2013.07.046

Google Scholar

[8] N. Ekthammathat, T. Thongtem, A. Phuruangrat, S. Thongtem, Photoluminescence of hexagonal ZnO nanorods hydrothermally grown on Zn foils in KOH solutions with different values of basicity, Journal of Nanomaterials. 2013 (2013) 208230-1-4.

DOI: 10.1155/2013/208230

Google Scholar

[9] Y. Jiao, H.J. Zhu, X.F. Wang, L. Shi, Y. Liu, L.M. Peng, Q. Li, A simple route to controllable growth of ZnO nanorod arrays on conducting substrates, CrystEngComm. 12 (2010) 940-946.

DOI: 10.1039/b918323j

Google Scholar

[10] C.L. Yan, D.F. Xue, Solution growth of nano- to microscopic ZnO on Zn, J. Cryst. Growth 310 (2008) 1836-1840.

DOI: 10.1016/j.jcrysgro.2007.10.060

Google Scholar

[11] D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto, Optically pumped lasing of ZnO at room temperature, Appl. Phys. Lett. 70 (1997) 2230-2232.

DOI: 10.1063/1.118824

Google Scholar

[12] Y.J. Xing, Z.H. Xi, Z.Q. Xue, X.D. Zhang, J.H. Song, R.M. Wang, J. Xu, Y. Song, S.L. Zhang, D.P. Yu, Optical properties of the ZnO nanotubes synthesized via vapor phase growth, Appl. Phys. Lett. 83 (2003) 1689-1691.

DOI: 10.1063/1.1605808

Google Scholar

[13] H.Z. Zhang, X.C. Sun, R.M. Wang, D.P. Yu, Growth and formation mechanism of c-oriented ZnO nanorod arrays deposited on glass, J. Cryst. Growth, 269 (2004) 464-471.

DOI: 10.1016/j.jcrysgro.2004.05.078

Google Scholar

[14] Z.P. Zhang, H.D. Yu, Y.B. Wang, M.Y. Han, Aggregation-driven growth of well-oriented ZnO nanorod arrays, Nanotechnology, 17 (2006) 2994-2997.

DOI: 10.1088/0957-4484/17/12/029

Google Scholar

[15] W.K. Tan, K.A. Razak, Z. Lockman, G. Kawamura, H. Muto, A. Matsuda, Formation of highly crystallized ZnO nanostructures by hot-water treatment on etched Zn foils, Mater. Lett. 91 (2013) 111.

DOI: 10.1016/j.matlet.2012.08.103

Google Scholar

[16] X.L. Hu, Y. Masuda, T. Ohji, K. Kato, Control of crystal growth for ZnO nanowhisker films in aqueous solution, Thin Solid Films. 518 (2009) 906-910.

DOI: 10.1016/j.tsf.2009.07.114

Google Scholar

[17] L.F. Xu, Y. Guo, Q. Liao, J.P. Zhang, D.S. Xu, Morphological control of ZnO nanostructures by electrodeposition, J. Phys. Chem. B. 109 (2005) 13519-13522.

DOI: 10.1021/jp051007b

Google Scholar