[1]
X.B. Tang, G.M. Li, S.M. Zhou, Ultraviolet Electroluminescence of light-emitting diodes based on single n-ZnO/p-AlGaN heterojunction nanowires, Nano Lett. 13 (2013) 5046-5050.
DOI: 10.1021/nl401941g
Google Scholar
[2]
R. Gazia, P. Motto, S. Stassi, A. Sacco, A. Virga, A. Lamberti, G. Canavese, Photodetection and piezoelectric response from hard and flexible sponge-like ZnO-based structures, Nano Energy. 2 (2013) 1294-1302.
DOI: 10.1016/j.nanoen.2013.06.010
Google Scholar
[3]
X. Li, Y. Chang, Y. Long, Influence of Sn doping on ZnO sensing properties for ethanol and acetone, Mater. Sci. Eng. C. 32 (2012) 817-821.
DOI: 10.1016/j.msec.2012.01.032
Google Scholar
[4]
X. Yu, X. Yu, J. Zhang, Z. Hu, G. Zhao, Y. Zhao, Effective light trapping enhanced near-UV/blue light absorption in inverted polymer solar cells via sol-gel textured Al-doped ZnO buffer layer, Solar Energy Materials and Solar Cells. 121 (2014).
DOI: 10.1016/j.solmat.2013.10.032
Google Scholar
[5]
J. Antony, Y. Qiang, Cathodoluminescence from a device of carbon nanotube-field emission display with ZnO nanocluster phosphor, Nanotechnology. 18 (2007) 295703-1-4.
DOI: 10.1088/0957-4484/18/29/295703
Google Scholar
[6]
Y. Wang, X. Zhang, H. Zhang, Q. Huang, F. Yang, X. Meng, C. Wei, Y. Zhao, Room temperature fabrication of highly textured hydrogen and tungsten co-doped ZnO film for solar cell applications, Solar Energy Materials and Solar Cells. 121 (2014).
DOI: 10.1016/j.solmat.2013.10.025
Google Scholar
[7]
H. Zhang, Y. Long, Z. Li, B. Sun, Fabrication of comb-like ZnO nanostructures for room-temperature CO gas sensing application, Vacuum. 101 (2014) 113-117.
DOI: 10.1016/j.vacuum.2013.07.046
Google Scholar
[8]
N. Ekthammathat, T. Thongtem, A. Phuruangrat, S. Thongtem, Photoluminescence of hexagonal ZnO nanorods hydrothermally grown on Zn foils in KOH solutions with different values of basicity, Journal of Nanomaterials. 2013 (2013) 208230-1-4.
DOI: 10.1155/2013/208230
Google Scholar
[9]
Y. Jiao, H.J. Zhu, X.F. Wang, L. Shi, Y. Liu, L.M. Peng, Q. Li, A simple route to controllable growth of ZnO nanorod arrays on conducting substrates, CrystEngComm. 12 (2010) 940-946.
DOI: 10.1039/b918323j
Google Scholar
[10]
C.L. Yan, D.F. Xue, Solution growth of nano- to microscopic ZnO on Zn, J. Cryst. Growth 310 (2008) 1836-1840.
DOI: 10.1016/j.jcrysgro.2007.10.060
Google Scholar
[11]
D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto, Optically pumped lasing of ZnO at room temperature, Appl. Phys. Lett. 70 (1997) 2230-2232.
DOI: 10.1063/1.118824
Google Scholar
[12]
Y.J. Xing, Z.H. Xi, Z.Q. Xue, X.D. Zhang, J.H. Song, R.M. Wang, J. Xu, Y. Song, S.L. Zhang, D.P. Yu, Optical properties of the ZnO nanotubes synthesized via vapor phase growth, Appl. Phys. Lett. 83 (2003) 1689-1691.
DOI: 10.1063/1.1605808
Google Scholar
[13]
H.Z. Zhang, X.C. Sun, R.M. Wang, D.P. Yu, Growth and formation mechanism of c-oriented ZnO nanorod arrays deposited on glass, J. Cryst. Growth, 269 (2004) 464-471.
DOI: 10.1016/j.jcrysgro.2004.05.078
Google Scholar
[14]
Z.P. Zhang, H.D. Yu, Y.B. Wang, M.Y. Han, Aggregation-driven growth of well-oriented ZnO nanorod arrays, Nanotechnology, 17 (2006) 2994-2997.
DOI: 10.1088/0957-4484/17/12/029
Google Scholar
[15]
W.K. Tan, K.A. Razak, Z. Lockman, G. Kawamura, H. Muto, A. Matsuda, Formation of highly crystallized ZnO nanostructures by hot-water treatment on etched Zn foils, Mater. Lett. 91 (2013) 111.
DOI: 10.1016/j.matlet.2012.08.103
Google Scholar
[16]
X.L. Hu, Y. Masuda, T. Ohji, K. Kato, Control of crystal growth for ZnO nanowhisker films in aqueous solution, Thin Solid Films. 518 (2009) 906-910.
DOI: 10.1016/j.tsf.2009.07.114
Google Scholar
[17]
L.F. Xu, Y. Guo, Q. Liao, J.P. Zhang, D.S. Xu, Morphological control of ZnO nanostructures by electrodeposition, J. Phys. Chem. B. 109 (2005) 13519-13522.
DOI: 10.1021/jp051007b
Google Scholar