[1]
A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature 238 (1972) 37-38.
DOI: 10.1038/238037a0
Google Scholar
[2]
A. Yasumori, K. Ishizu, S. Hayashi, K. Okada, Preparation of a TiO2 based multiple layer thin-film photocatalyst, J. Mater. Chem. 8 (1998) 2521-2524.
DOI: 10.1039/a803265c
Google Scholar
[3]
L. Lin, Y.C. Yang, L. Men, X. Wang, D.N. He, Y.C. Chai, Q.W. Tang, S. Ghoshroy, An efficient TiO2@ZnO nanorod as versatile photocatalyst, Nanoscale 5 (2013) 588-593.
DOI: 10.1039/c2nr33109h
Google Scholar
[4]
Y.F. Huang, Y.L. Wei, J.H. Wu, C.S. Guo, M. Wang, S. Yin, T. Sato, Low Temperature Synthesis and Photocatalytic Properties of Highly Oriented ZnO/TiO2-xNy Coupled Photocatalysts, Appl. Catal. B-Environ. 123-124 (2012) 9-17.
DOI: 10.1016/j.apcatb.2012.04.010
Google Scholar
[5]
Y. G. Tao, Y. Q. Xu, J. Pan, H. Gu, C. Y. Qin, P. Zhou, Glycine assisted synthesis of flower-like TiO2 hierarchical spheres and its application in photocatalysis, Mater. Sci. Eng. B 18 (2012) 1664-1671.
DOI: 10.1016/j.mseb.2012.08.010
Google Scholar
[6]
L.J. Meng, C. Li, Blocking Layer Effect on Dye-Sensitized Solar Cells Assembled with TiO2 Nanorods Prepared by dc Reactive Magnetron Sputtering, Nanosci. Nanotechnol. Lett. 3 (2011) 181-185.
DOI: 10.1166/nnl.2011.1143
Google Scholar
[7]
Y.T. Li, X. Sun, H. Li, S. Wang, Y. Wei, Preparation of anatase TiO2 nanoparticles with high thermal stability and specific surface area by alcohothermal method, Powder Technol. 194 (2009) 149-152.
DOI: 10.1016/j.powtec.2009.03.041
Google Scholar
[8]
M.R. Mohammadi, M.C. Cordero-Cabrera, D.J. Fray, M. Ghorbani, Preparation of High Surface Area Titania (TiO2) Films and Powders using Particulate Sol-Gel Route Aided by Polymeric Fugitive Agents, Sensor. Actuat. B- Chem. 120 (2006) 86-95.
DOI: 10.1016/j.snb.2006.01.046
Google Scholar
[9]
X. Yan, L. Feng, J. Jia, X. Zhou, Y. Lin, Controllable synthesis of anatase TiO2 crystals for high-performance dye-sensitized solar cells, J. Mater. Chem. A 1 (2013) 5347-5352.
DOI: 10.1039/c3ta01621h
Google Scholar
[10]
A. Tricoli, A.S. Wallerand, M. Righettoni, Highly porous TiO2 films for dye sensitized solar cells, J. Mater. Chem. 22 (2012) 14254-14261.
DOI: 10.1039/c2jm15953h
Google Scholar
[11]
D. Wen, S.J. Guo, Y.Z. Wang, S.J. Dong, Bifunctional Nanocatalyst of Bimetallic Nanoparticle/TiO2 with Enhanced Performance in Electrochemical and Photoelectrochemical Applications, Langmuir 26(2010) 11401-11406.
DOI: 10.1021/la100869r
Google Scholar
[12]
J. Ananpattarachai, P. Kajitvichyanukul, S. Seraphin, Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different dopants, J. Hazard. Mater. 168 (2009) 253-261.
DOI: 10.1016/j.jhazmat.2009.02.036
Google Scholar
[13]
R. Asahi, T. Morikawa, T. Ohwaki, A. Aoki, Y. Yaga, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides, Science 293 (2001) 269-271.
DOI: 10.1126/science.1061051
Google Scholar
[14]
T.P. Ang, Sol-gel synthesis of a novel melon-SiO2 nanocomposite with photocatalytic activity, Catal. Commun. 10 (2009) 1920-(1924).
DOI: 10.1016/j.catcom.2009.07.001
Google Scholar
[15]
L. Lin, Y.C. Chai, Y.C. Yang, X. Wang, D.N. He, Q.W. Tang, S. Ghoshroy, Hierarchical Gd-La codoped TiO2 microspheres as robust photocatalysts, Int. J. Hydrogen. Energy 38 (2013) 2634-2640.
DOI: 10.1016/j.ijhydene.2012.11.100
Google Scholar
[16]
H. Diker, C. Varlikli, K. Mizrak, A. Dana, Characterization and photocatalytic activity comparisons of N-doped nc-TiO2 depending on synthetic conditions and structural differences of amine sources, Energy. 36 (2011) 1243-1254.
DOI: 10.1016/j.energy.2010.11.020
Google Scholar
[17]
T. Komatsu, Prototype carbon nitrides similar to the symmetric triangular form of melon, J. Mater. Chem. 11 (2001) 802-805.
DOI: 10.1039/b007165j
Google Scholar