Lithiation/ Delithiation Process of Silicon-Carbon Composites Prepared by Mechanical Alloying

Article Preview

Abstract:

In this study, graphite doped silicon was prepared by mechanical alloying (MA). MA is an effective method to manufacture silicon-carbon composite. The results show that the capacity retention ability of the graphite doped silicon by MA anode is better than silicon. The fellow result shows that LiaCb appears at the middle of lithiation process and disappear with the production of LixSiy, LixSiy produce and disappears at the end of lithiation process and beginning of delithiation process respectively. The SEI film enhanced with the increasing amount of lithium and silicon-carbon composite material was severely decomposed with the cycles increase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-53

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.N. Obrovac, L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction. Electrochem Solid-State Lett, 7A (2004) 93-97.

DOI: 10.1149/1.1652421

Google Scholar

[2] S. Bourderau, T. Brousse, D.M. Schleich, Amorphous silicon as a possible anode material for Li-ion batteries. J Power Sources. 81 (1999) 233-236.

DOI: 10.1016/s0378-7753(99)00194-9

Google Scholar

[3] H. Li, X. Huang, L. Chen, Z. Wu, Y. Liang, A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochem. Solid-State Lett. 2 (1999) 547—549.

DOI: 10.1149/1.1390899

Google Scholar

[4] H. Ma, F. Cheng, J. Chen, J. Zhao, C. Li, . Z. Tao, J. Liang, Si/MgO composite anodes for Li-ion batteries. Adv. Mater. 19 (2007) 4067—4070.

Google Scholar

[5] S.H. Ng, J. Wang, D. Wexler, K. Konstantinov, Z.P. Guo, H.K. Liu, Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angew. Chem. Int. Ed. 45 (2006) 6896—6899.

DOI: 10.1002/anie.200601676

Google Scholar

[6] S.H. Ng, J Wang, D. Wexler, S.Y. Chew, H.K. Liu, A low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries. J. Phys. Chem. C. 111 (2007) 11131—11138.

DOI: 10.1021/jp072778d

Google Scholar

[7] M. Yoshio, H. Wang, K. Fukuda, T. Umeno, N. Dimov, Z.J. Ogumi, Carbon-coated Si as a lithium-ion battery anode material. Electrochem. Soc. 149 (2002) 1598—1603.

DOI: 10.1149/1.1518988

Google Scholar

[8] M.H. Park, M.G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, J. Cho, Silicon nanotube battery anodes. Nano Lett. 9 (2009) 3844—3847.

DOI: 10.1021/nl902058c

Google Scholar

[9] H. Kim, B. Han, J. Choo, J. Cho, Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed. 47 (2008) 10151—10154.

DOI: 10.1002/anie.200804355

Google Scholar

[10] X.D. Wu, Z.X. Wang, L.Q. Chen, Ag-enhanced SEI formation on Si particles for lithium batteries. Electrochemistry Communications. 5 (2003) 935—939.

DOI: 10.1016/j.elecom.2003.09.001

Google Scholar

[11] Y.H. Xu, G.P. Yin, P.J. Zuo, Geometric and electronic studies of Li15Si4 for silicon anode. Electrochimica Acta. 54 (2008) 341-345.

DOI: 10.1016/j.electacta.2008.07.083

Google Scholar