Influence of Electron-Phonon Coupling Coefficient on Properties in Femtosecond Laser Ablation

Article Preview

Abstract:

Thermodynamics effects generated by femtosecond laser ablation are very important. In this work, the numerical simulation of high-energy femtosecond laser ablation especially the electro-phonon coupling coefficient influence of high-energy femtosecond laser ablation on metal target was studied. A new two-temperature model (TTM) which considered the effects of electron density of states (DOS) on electron-phonon coupling coefficient was first established, then the temperature evolvement for electron and lattice in different electro-phonon coupling coefficient G, and the effect of G on electron temperature and lattice temperature and electron-phonon coupling time were emphatically analyzed. The results showed that the electron-phonon coupling coefficient strongly affected the surface electron temperature and coupling time in the femtosecond laser ablation. The smaller the electron-phonon coupling coefficient was, the more the energy transmission from electronic to ion subsystem. As a result, the smaller the value of electron-phonon coupling coefficient, a more rapid decline for the temperature of electronic sub-system achieved. This work will offer help for the future investigation of material fabrication by femtosecond laser ablation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

144-149

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Wang and C. Guo, Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals. Applied Physics Letters, 87 (2005) 251914-251917.

DOI: 10.1063/1.2146067

Google Scholar

[2] Tan Xinyu, Wei Huili, Mao Feng, Xu Huijin,Huang Xiangping, Yi Jia, Effect of Electronic Thermal Conductivity on Properties of Gold Target Material of Femtosecond Laser Ablation, Chinese journal of rare metals. 35(2011) 704-708.

Google Scholar

[3] P. P. Pronko, S. K. Dutta, J. Squier, J.V. Rudd, D. Du, G. Mourou, Machining of sub-micron holes using a femtosecond laser at 800 nm, Optics communications, 114(1995) 106-110.

DOI: 10.1016/0030-4018(94)00585-i

Google Scholar

[4] B. N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tnnermann, Femtosecond, picosecond and nanosecond laser ablation of solids. Applied Physics A. 63(1996) 109-115.

DOI: 10.1007/bf01567637

Google Scholar

[5] G. Ausanio, A. C. Barone, V. Iannotti, L. Lanotte, S. Amoruso, R. Bruzzese, and M. Vitiello, Magnetic and morphological characteristics of nickel nanoparticles films produced by femtosecond laser ablation, Applied physics letters, 85(2004).

DOI: 10.1063/1.1815065

Google Scholar

[6] Murnane M M, Kapteyn H C, Falcone R W, High-density plasmas produced by ultrafast laser pulses, Physical review letters. 62(1989) 155-158.

DOI: 10.1103/physrevlett.62.155

Google Scholar

[7] Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fr aenkel, S. Maman and Y. Lereah, Synthesis of nanoparticles with femtosecond laser pulses, Physical Review B. 69(2004) 144119-144114.

DOI: 10.1103/physrevb.69.144119

Google Scholar

[8] Marcus S, Lowder J E, Mooney D L, Large-spot thermal coupling of CO2 laser radiation to metallic surfaces, Journal of Applied Physics, 47(1976) 2966-2968.

DOI: 10.1063/1.323035

Google Scholar

[9] J. A. McKay, R. D. Bleach, D. J. Nagel, J. T. Schriempf, R. B. Hall, C. R. Pond, and S. K. Manlief, Pulsed‐CO2‐laser interaction with aluminum in air: Thermal response and plasma characteristics, Journal of Applied Physics, 50(1979) 3231-3240.

DOI: 10.1063/1.326361

Google Scholar

[10] Lin Z, Zhigilei L V, Temperature dependences of the electron–phonon coupling, electron heat capacity and thermal conductivity in Ni under femtosecond laser irradiation. Applied Surface Science. 253(2007) 6295-6300.

DOI: 10.1016/j.apsusc.2007.01.032

Google Scholar

[11] Lin Z, Zhigilei L V, Celli V, Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Physical Review B. 77(2008) 075133-075150.

DOI: 10.1103/physrevb.77.075133

Google Scholar

[12] Wang J, Guo C, Numerical study of ultrafast dynamics of femtosecond laser-induced periodic surface structure formation on noble metals. Journal of Applied Physics, 102(2007) 053522-053526.

DOI: 10.1063/1.2776004

Google Scholar

[13] R. R. Fang, D. M. Zhang, H. Wei, D. Z. Hu, Z. H. Li, X. Y. Tan, M. Sun and F. X. Yang, A unified thermal model of thermo-physical effects with pulse width from nanosecond to femtosecond. European physical journal, Applied physics, 42(2008).

DOI: 10.1051/epjap:2008061

Google Scholar

[14] Li Li, Zhang Duanming, Fang Ranran and Zu Xiaotao, Residual energy in femtosecond multipulse laser ablation of metal. 11 (2009)1671-1675.

Google Scholar

[15] Hui Li Wei, Feng Mao, Xin Yu Tan, Xiang Ping Huang, Zhao Wang, Hui Jin Xu, Chang Yuan Zhang, Jia Yi, The influence of DOS effects on ablation properties in high energy femtosecond laser ablation process. Materials Science Forum. 689(2011) 11-15.

DOI: 10.4028/www.scientific.net/msf.689.11

Google Scholar