[1]
J.C. Fan, K.M. Sreekanth, Z. Xie, S.L. Chang, K.V. Rao, p-type ZnO materials: theory, Growth, properties and devices, Prog. Mater. Sci. 58(2013) 874-985.
DOI: 10.1016/j.pmatsci.2013.03.002
Google Scholar
[2]
Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98(2005) 041301.
DOI: 10.1063/1.1992666
Google Scholar
[3]
Y. Wu, J. Yun, L.Q. Wang, X. Yang, Structure and optical properties of Mg-doped ZnO nanoparticles by polyacrylamide method, Cryst. Res. Technol. 48(2013) 145-152.
DOI: 10.1002/crat.201200438
Google Scholar
[4]
V. Etacheri, R. Roshan, V. Kumar, Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis, ACS Appl. Mater. Interfaces. 4(2012) 2717-2725.
DOI: 10.1021/am300359h
Google Scholar
[5]
S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Recent progress in processing and properties of ZnO, Prog. Mater. Sci. 50(2005) 293-340.
DOI: 10.1016/j.pmatsci.2020.100669
Google Scholar
[6]
C.Y. Lee, T.Y. Tseng, S.Y. Li, P. Lin, Single-crystalline MgxZn1-xO (0<=x<=0. 25) nanowires on glass substrates obtained by a hydrothermal method: Growth, structure and electrical characteristics, Nanotechnology. 16(2005) 1105-1111.
DOI: 10.1088/0957-4484/16/8/019
Google Scholar
[7]
F. Xu, Y.F. Yuan, D.P. Wu, M. ZhO, Z.Y. Gao, K. Jiang, Synthesis of ZnO/Ag/graphene composite and its enhanced photocatalytic efficiency, Mater. Res. Bull. 48(2013) 2066-(2070).
DOI: 10.1016/j.materresbull.2013.02.034
Google Scholar
[8]
C. Xu, X. Wang, J.W. Zhu, X.J. Yang, L. Lu, Deposition of Co3O4 nanoparticles onto exfoliated graphite oxide sheets, J. Mater. Chem. 18(2008) 5625-5629.
DOI: 10.1039/b809712g
Google Scholar
[9]
C. Nethravathi, T. Nisha, N. Ravishankar, C. Shivakumara, M. Rajamathi, Graphene-nanocrystalline metal sulphide composites produced by a one-pot reaction starting from graphite oxide, Carbon. 47(2009) 2054-(2059).
DOI: 10.1016/j.carbon.2009.03.055
Google Scholar
[10]
X.Y. Yang, X.Y. Zhang, Y.F. Ma, Y. Huang, Y.S. Wang, Y.S. Chen, Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers, J. Mater. Chem. 19(2009) 2710-2714.
DOI: 10.1039/b821416f
Google Scholar
[11]
D.H. Wang, D.W. Choi, J. Li, Z.G. Yang, Z.M. Nie, R. Kou, D.H. Hu, C.M. Wang, L.V. Saraf, J.G. Zhang, I.A. Aksay, J. Liu, Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-Ion insertion, ACS Nano. 3(2009) 907-914.
DOI: 10.1021/nn900150y
Google Scholar
[12]
S.M. Paek, E. Yoo, I. Honma, Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure, Nano Lett. 9(2009) 72-75.
DOI: 10.1021/nl802484w
Google Scholar
[13]
G. Williams, B. Seger, P.V. Kamat, TiO2-graphene nanocomposites UV-assisted photocatalytic reduction of graphene oxide, ACS Nano. 2(2008) 1487-1491.
DOI: 10.1021/nn800251f
Google Scholar
[14]
T. Cassagneau, J.H. Fendler, S.A. Johnson, T.E. Mallouk, Self-assembled diode junctions prepared from a ruthenium tris (bipyridyl) polymer, n-type TiO2 nanoparticles, and graphite oxide sheets, Adv. Mater. 12(2000) 1363-1366.
DOI: 10.1002/1521-4095(200009)12:18<1363::aid-adma1363>3.0.co;2-m
Google Scholar
[15]
G. Williams, P. V. Kamat, Graphene-semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide, Langmuir. 25(2009) 13869-13873.
DOI: 10.1021/la900905h
Google Scholar
[16]
Q.D. Zhao, M. Yu, T.F. Xie, L.L. Peng, P. Wang, D.J. Wang, Photovoltaic properties of a ZnO nanorod array affected by ethanol and liquid-crystalline porphyrin, Nanotechnology. 19(2008) 245706.
DOI: 10.1088/0957-4484/19/24/245706
Google Scholar
[17]
L.Q. Wang, Y. Wu, F.Y. Chen, X. Yang, Photocatalytic enhancement of Mg-doped ZnO nanocrystals hybridized with reduced graphene oxide sheets. Prog. Nat. Sci. 24(2014) 6-12.
DOI: 10.1016/j.pnsc.2014.01.002
Google Scholar
[18]
J. Zhang, W.W. Wang, X.H. Liu, Ag-ZnO hybrid nanopyramids for high visible-light photocatalytic hydrogen production performance, Mater. Lett. 110(2013) 204-207.
DOI: 10.1016/j.matlet.2013.07.113
Google Scholar
[19]
Y.H. Zheng, L.R. Zheng, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K.M. Wei, Ag/ZnO heterostructure nanocrystals: Synthesis, characterization, and photocatalysis, Inorg. Chem. 46(2007) 6980-6986.
DOI: 10.1021/ic700688f
Google Scholar
[20]
D.D. Lin, H. Wu, R. Zhang, W. Pan, Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers, Chem. Mater. 21(2009) 3479-3484.
DOI: 10.1021/cm900225p
Google Scholar
[21]
S.Y. Gao, X.X. Jia, S.X. Yang, Z.D. Li, K. Jiang, Hierarchical Ag/ZnO micro/nanostructure: Green synthesis and enhanced photocatalytic performance, J. Solid State Chem. 184(2011) 764-769.
DOI: 10.1016/j.jssc.2011.01.025
Google Scholar
[22]
C.L. Ren, B.F. Yang, M. Wu, J. Xu, Z.P. Fu, Y. Lv, T. Guo, Y.X. Zhao, C.Q. Zhu, Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance, J. Hazard. Mater. 182(2010) 123-129.
DOI: 10.1016/j.jhazmat.2010.05.141
Google Scholar
[23]
J.L. Wu, X.P. Shen, L. Jiang, K. Wang, K.M. Chen, Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites, Appl. Surf. Sci. 256(2010) 2826-2830.
DOI: 10.1016/j.apsusc.2009.11.034
Google Scholar
[24]
Y.Y. Bu, Z.Y. Chen, W.B. Li, Dramatically enhanced photocatalytic properties of Ag-modified graphene-ZnO quasi-shell-core heterojunction composite material, RSC Adv. 3(2013) 24118-24125.
DOI: 10.1039/c3ra44047h
Google Scholar
[25]
T.G. Xu, L.W. Zhang, H.Y. Cheng, Y.F. Zhu, Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study, Appl. Catal. B: Environ. 101(2011) 382-387.
DOI: 10.1016/j.apcatb.2010.10.007
Google Scholar
[26]
Y. Yokomizo, S. Krishnamurthy, P.V. Kamat, Photoinduced electron charge and discharge of graphene-ZnO nanoparticle assembly, Catal. Today. 199(2013) 36-41.
DOI: 10.1016/j.cattod.2012.04.045
Google Scholar
[27]
Y.L. Dong, S. Zhang, P. Wang, A facile synthesis of Ag modified ZnO nanocrystals with enhanced photocatalytic activity, J. Wuhan University of Tech. -Mater. Sci. Ed. 4(2012) 615-620.
DOI: 10.1007/s11595-012-0515-2
Google Scholar
[28]
R. Georgekutty, M.K. Seery, S.C. Pillai, A highly efficient Ag-ZnO photocatalyst: Synthesis, properties, and mechanism, J. Phys. Chem. C, 112(2008) 13563-13570.
DOI: 10.1021/jp802729a
Google Scholar
[29]
I.V. Lightcap, T.H. Kosel, P.V. Kamat, Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst Mat. storing and shuttling electrons with reduced graphene oxide, Nano Lett. 10(2010) 577-583.
DOI: 10.1021/nl9035109
Google Scholar
[30]
S. Krishnamurthy, I.V. Lightcap, P.V. Kamat, Electron transfer between methyl viologen radicals and graphene oxide: Reduction, electron storage and discharge, J. Photochem. Photobiol. A: Chem. 221(2011) 214-219.
DOI: 10.1016/j.jphotochem.2011.02.024
Google Scholar
[31]
D.D. Lin, H. Wu, R. Zhang, W. Pan, Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers, Chem. Mater. 21(2009) 3479-3484.
DOI: 10.1021/cm900225p
Google Scholar
[32]
Y.H. Zheng, L.R. Zheng, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K.M. Wei, Ag/ZnO heterostructure nanocrystals: Synthesis, characterization, and photocatalysis, Inorg. Chem. 46(2007) 6980-6986.
DOI: 10.1021/ic700688f
Google Scholar