Enhanced Photocatalytic Properties of Ag-Modified Mg-Doped ZnO Nanocrystals Hybridized with Reduced Graphene Oxide Sheets

Article Preview

Abstract:

Heterojunction semiconductor composites could enhance the photoelectric conversion efficiency of photocatalysts. We successfully in-situ synthesized the hybrids of Mg-doped ZnO and reduced graphene oxide (MZO/RGO) by one-pot wet chemical method. Ag nanocrystals are loaded onto the MZO/RGO composites by photochemical reduction method. Crystallization of MZO/RGO-Ag upon thermal decomposition of the stearate precursors was investigated by X-ray diffraction technique. XRD studies point toward the particles size with 15-20 nm, which was confirmed by scanning electron microscope and energy dispersive X-ray spectroscopy, and also indicates that Ag nanoparticles were deposited on the surface of nanocomposites. The photocatalytic performance of ZnO nanomaterial was significantly improved by Mg-doping, RGO sheets corporation and Ag hybridization. It was found that the RGO sheets take the role of improving the charge separation during the photocatalytic activity, and the presence of Ag nanocrystals enhances the quick discharge of photoinduced electrons under the UV light. Therefore, the MZO/RGO-Ag nanohybrids are excellent candidates for the applications of environmental issues.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

161-166

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.C. Fan, K.M. Sreekanth, Z. Xie, S.L. Chang, K.V. Rao, p-type ZnO materials: theory, Growth, properties and devices, Prog. Mater. Sci. 58(2013) 874-985.

DOI: 10.1016/j.pmatsci.2013.03.002

Google Scholar

[2] Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98(2005) 041301.

DOI: 10.1063/1.1992666

Google Scholar

[3] Y. Wu, J. Yun, L.Q. Wang, X. Yang, Structure and optical properties of Mg-doped ZnO nanoparticles by polyacrylamide method, Cryst. Res. Technol. 48(2013) 145-152.

DOI: 10.1002/crat.201200438

Google Scholar

[4] V. Etacheri, R. Roshan, V. Kumar, Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis, ACS Appl. Mater. Interfaces. 4(2012) 2717-2725.

DOI: 10.1021/am300359h

Google Scholar

[5] S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Recent progress in processing and properties of ZnO, Prog. Mater. Sci. 50(2005) 293-340.

DOI: 10.1016/j.pmatsci.2020.100669

Google Scholar

[6] C.Y. Lee, T.Y. Tseng, S.Y. Li, P. Lin, Single-crystalline MgxZn1-xO (0<=x<=0. 25) nanowires on glass substrates obtained by a hydrothermal method: Growth, structure and electrical characteristics, Nanotechnology. 16(2005) 1105-1111.

DOI: 10.1088/0957-4484/16/8/019

Google Scholar

[7] F. Xu, Y.F. Yuan, D.P. Wu, M. ZhO, Z.Y. Gao, K. Jiang, Synthesis of ZnO/Ag/graphene composite and its enhanced photocatalytic efficiency, Mater. Res. Bull. 48(2013) 2066-(2070).

DOI: 10.1016/j.materresbull.2013.02.034

Google Scholar

[8] C. Xu, X. Wang, J.W. Zhu, X.J. Yang, L. Lu, Deposition of Co3O4 nanoparticles onto exfoliated graphite oxide sheets, J. Mater. Chem. 18(2008) 5625-5629.

DOI: 10.1039/b809712g

Google Scholar

[9] C. Nethravathi, T. Nisha, N. Ravishankar, C. Shivakumara, M. Rajamathi, Graphene-nanocrystalline metal sulphide composites produced by a one-pot reaction starting from graphite oxide, Carbon. 47(2009) 2054-(2059).

DOI: 10.1016/j.carbon.2009.03.055

Google Scholar

[10] X.Y. Yang, X.Y. Zhang, Y.F. Ma, Y. Huang, Y.S. Wang, Y.S. Chen, Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers, J. Mater. Chem. 19(2009) 2710-2714.

DOI: 10.1039/b821416f

Google Scholar

[11] D.H. Wang, D.W. Choi, J. Li, Z.G. Yang, Z.M. Nie, R. Kou, D.H. Hu, C.M. Wang, L.V. Saraf, J.G. Zhang, I.A. Aksay, J. Liu, Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-Ion insertion, ACS Nano. 3(2009) 907-914.

DOI: 10.1021/nn900150y

Google Scholar

[12] S.M. Paek, E. Yoo, I. Honma, Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure, Nano Lett. 9(2009) 72-75.

DOI: 10.1021/nl802484w

Google Scholar

[13] G. Williams, B. Seger, P.V. Kamat, TiO2-graphene nanocomposites UV-assisted photocatalytic reduction of graphene oxide, ACS Nano. 2(2008) 1487-1491.

DOI: 10.1021/nn800251f

Google Scholar

[14] T. Cassagneau, J.H. Fendler, S.A. Johnson, T.E. Mallouk, Self-assembled diode junctions prepared from a ruthenium tris (bipyridyl) polymer, n-type TiO2 nanoparticles, and graphite oxide sheets, Adv. Mater. 12(2000) 1363-1366.

DOI: 10.1002/1521-4095(200009)12:18<1363::aid-adma1363>3.0.co;2-m

Google Scholar

[15] G. Williams, P. V. Kamat, Graphene-semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide, Langmuir. 25(2009) 13869-13873.

DOI: 10.1021/la900905h

Google Scholar

[16] Q.D. Zhao, M. Yu, T.F. Xie, L.L. Peng, P. Wang, D.J. Wang, Photovoltaic properties of a ZnO nanorod array affected by ethanol and liquid-crystalline porphyrin, Nanotechnology. 19(2008) 245706.

DOI: 10.1088/0957-4484/19/24/245706

Google Scholar

[17] L.Q. Wang, Y. Wu, F.Y. Chen, X. Yang, Photocatalytic enhancement of Mg-doped ZnO nanocrystals hybridized with reduced graphene oxide sheets. Prog. Nat. Sci. 24(2014) 6-12.

DOI: 10.1016/j.pnsc.2014.01.002

Google Scholar

[18] J. Zhang, W.W. Wang, X.H. Liu, Ag-ZnO hybrid nanopyramids for high visible-light photocatalytic hydrogen production performance, Mater. Lett. 110(2013) 204-207.

DOI: 10.1016/j.matlet.2013.07.113

Google Scholar

[19] Y.H. Zheng, L.R. Zheng, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K.M. Wei, Ag/ZnO heterostructure nanocrystals: Synthesis, characterization, and photocatalysis, Inorg. Chem. 46(2007) 6980-6986.

DOI: 10.1021/ic700688f

Google Scholar

[20] D.D. Lin, H. Wu, R. Zhang, W. Pan, Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers, Chem. Mater. 21(2009) 3479-3484.

DOI: 10.1021/cm900225p

Google Scholar

[21] S.Y. Gao, X.X. Jia, S.X. Yang, Z.D. Li, K. Jiang, Hierarchical Ag/ZnO micro/nanostructure: Green synthesis and enhanced photocatalytic performance, J. Solid State Chem. 184(2011) 764-769.

DOI: 10.1016/j.jssc.2011.01.025

Google Scholar

[22] C.L. Ren, B.F. Yang, M. Wu, J. Xu, Z.P. Fu, Y. Lv, T. Guo, Y.X. Zhao, C.Q. Zhu, Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance, J. Hazard. Mater. 182(2010) 123-129.

DOI: 10.1016/j.jhazmat.2010.05.141

Google Scholar

[23] J.L. Wu, X.P. Shen, L. Jiang, K. Wang, K.M. Chen, Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites, Appl. Surf. Sci. 256(2010) 2826-2830.

DOI: 10.1016/j.apsusc.2009.11.034

Google Scholar

[24] Y.Y. Bu, Z.Y. Chen, W.B. Li, Dramatically enhanced photocatalytic properties of Ag-modified graphene-ZnO quasi-shell-core heterojunction composite material, RSC Adv. 3(2013) 24118-24125.

DOI: 10.1039/c3ra44047h

Google Scholar

[25] T.G. Xu, L.W. Zhang, H.Y. Cheng, Y.F. Zhu, Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study, Appl. Catal. B: Environ. 101(2011) 382-387.

DOI: 10.1016/j.apcatb.2010.10.007

Google Scholar

[26] Y. Yokomizo, S. Krishnamurthy, P.V. Kamat, Photoinduced electron charge and discharge of graphene-ZnO nanoparticle assembly, Catal. Today. 199(2013) 36-41.

DOI: 10.1016/j.cattod.2012.04.045

Google Scholar

[27] Y.L. Dong, S. Zhang, P. Wang, A facile synthesis of Ag modified ZnO nanocrystals with enhanced photocatalytic activity, J. Wuhan University of Tech. -Mater. Sci. Ed. 4(2012) 615-620.

DOI: 10.1007/s11595-012-0515-2

Google Scholar

[28] R. Georgekutty, M.K. Seery, S.C. Pillai, A highly efficient Ag-ZnO photocatalyst: Synthesis, properties, and mechanism, J. Phys. Chem. C, 112(2008) 13563-13570.

DOI: 10.1021/jp802729a

Google Scholar

[29] I.V. Lightcap, T.H. Kosel, P.V. Kamat, Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst Mat. storing and shuttling electrons with reduced graphene oxide, Nano Lett. 10(2010) 577-583.

DOI: 10.1021/nl9035109

Google Scholar

[30] S. Krishnamurthy, I.V. Lightcap, P.V. Kamat, Electron transfer between methyl viologen radicals and graphene oxide: Reduction, electron storage and discharge, J. Photochem. Photobiol. A: Chem. 221(2011) 214-219.

DOI: 10.1016/j.jphotochem.2011.02.024

Google Scholar

[31] D.D. Lin, H. Wu, R. Zhang, W. Pan, Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers, Chem. Mater. 21(2009) 3479-3484.

DOI: 10.1021/cm900225p

Google Scholar

[32] Y.H. Zheng, L.R. Zheng, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K.M. Wei, Ag/ZnO heterostructure nanocrystals: Synthesis, characterization, and photocatalysis, Inorg. Chem. 46(2007) 6980-6986.

DOI: 10.1021/ic700688f

Google Scholar