Entanglement of CeO2 Nanorods and Graphene Nanoribbons and their Properties Studies of Nanocomposites

Article Preview

Abstract:

Nano/Micro-structured CeO2 and their nanocomposites have been received considerable attention in basic research and commercial applications, such as, new energy fields, photocatalysts, environmental fields, et al. To extend its visible light response and pave the effective conductive channels for charge transfer and separation in nanoscale is still facing great challenges. To explore these key issues of materials chemistry and physics, CeO2 nanorods were prepared with aid of soft templates by wet chemical approach. Graphene nanoribbons were obtained with unzipping method of carbon nanotube (CNTs). Entanglement of CeO2 nanorods and graphene nanoribbons oxides was realized based on the supermolecular interactions between surface active groups of CeO2 nanorods and graphene nanoribbons oxides and excellent flexibility of graphene nanoribbons. A series of characterizations were examined by SEM (scanning electron microscopy), TEM (transmission electron microscopy), XRD (X-ray diffraction), the Fourier-Transform Infrared (FTIR) spectra, ultraviolet-visible spectroscopy (UV-Vis) and so on. Photocatalytic efficiency was examined by selecting typical organic pollutants. The results indicated that the entanglement of a small amount of graphene nanoribbons on the surface of CeO2 nanorods not only expanded the light response of nanocomposite to visible light, but also enhanced the adsorption properties to organic pollutants. Because of excellent charge transfer properties and high mobility of graphene nanoribbons, the nanocomposites of CeO2/graphene nanoribbons are favor for electron-holes pairs generated by visible light, separation, and transfer, which would be important potential applications in photocatalysts, artificial photosynthesis system, nano/micro-devices, et al.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

153-160

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Zabilskiy, B. Erjavec, P. Djinović, A. Pintar: Chemical Engineering Journal Vol. 254 (2014), p.153.

Google Scholar

[2] L. Ge, T. Chen, Z. Liu, Feng Chen: Catalysis Today Vol. 224(2014), p.209.

Google Scholar

[3] Z. Qu, F. Yu, X. Zhang, Y. Wang, J. Gao: Chemical Engineering Journal Vol. 229( 2013), p.522.

Google Scholar

[4] C. Tang, J. Sun, X. Yao, Y. Cao, L. Liu, C. Ge, F. Gao: Applied Catalysis B: Environmental Vol. 146 (2014), p.201.

Google Scholar

[5] S. Zeng, K. Liu, T. Chen, H. Su : International journal o f hydrogen energy Vol. 38 (2013), p.14542.

Google Scholar

[6] X. Jiang, J. Hua, H. Deng, Z. Wu: Journal of Molecular Catalysis A: Chemical Vol. 383– 384 (2014), p.188.

Google Scholar

[7] Z. Wang, Z. Qu, X. Quan, Z. Li, H. Wang, R. Fan: Applied Catalysis B: Environmental Vol. 134– 135 (2013), p.153.

Google Scholar

[8] Y. Peng, C. Wang, J. Li: Applied Catalysis B: Environmental Vol. 144 (2014), p.538.

Google Scholar

[9] Z. Qu, F. Yu, X. Zhang, Y. Wang, J. Gao: Chemical Engineering Journal Vol. 229 (2013), p.522.

Google Scholar

[10] K. Park, Y. W. Lee, Y. Kim, S. Kang, and S. W. Han: Chem. Eur. J. Vol. 19(2013), p.8053.

Google Scholar

[11] S. SENANAYAKE, D. STACCHIOLA, A. RODRIGUEZ: ACCOUNTS OF CHEMICAL RESEARCH, Vol. 46(2013), p.1702.

Google Scholar

[12] S. Ameen, M. S. Akhtar, H. Seo, H. Shin: Chemical Engineering Journal, 247( 2014), 193-198.

Google Scholar

[13] I. Liu, M. Hon, L. Teoh: Ceramics International Vol. 40 (2014), p.4019.

Google Scholar

[14] Y. Wang, F. Wang, Y. Chen, D. Zhang, B. Li, S. Kang, X. Li, L. Cui: Applied Catalysis B: Environmental Vol. 147( 2014), p.602.

Google Scholar

[15] H. Balavi, S. Samadanian-Isfahani, M. Mehrabani-Zeinabad, M. Edrissi: Powder Technology Vol. 249 (2013), p.549.

DOI: 10.1016/j.powtec.2013.09.021

Google Scholar

[16] S. Ameen, M. S. Akhtar, H. Seo, H. Shin: Chemical Engineering Journal Vol. 247 (2014), p.193.

Google Scholar

[17] M.E. Contreras-Garcíaa, M. Lorena García-Benjumea, Víctor I. Macías-Andrésa, E. Barajas-Ledesmab, A. Medina-Floresa, M.I. Espitia-CabreracaInstituto: Materials Science and Engineering B Vol. 183 (2014), p.78.

Google Scholar

[18] M. Michalska, B. Hamankiewicz, D. Ziółkowska, M. Krajewski, L. Lipińska, M. Andrzejczuk, A. Czerwiński: Electrochimica Acta Vol. 136( 2014), p.286.

DOI: 10.1016/j.electacta.2014.05.108

Google Scholar

[19] A. Hornés, M. J. Escudero, L. Daza, A. Martínez-Arias: Journal of Power Sources Vol. 249( 2014), p.520.

Google Scholar

[20] D. Chen, G. Yang, Z. Shao, F. Ciucci: Electrochemistry Communications Vol. 35( 2013), p.131.

Google Scholar

[21] C. Feng, T. Takeuchi, M. A. Abdelkareem, T. Tsujiguchi: Journal of Power Sources Vol. 242 (2013), p.57.

Google Scholar

[22] L. Adijanto, A. Sampath, A. S. Yu, M. Cargnello, P. Fornasiero, R. J. Gorte, and J. M. Vohs: ACS Catal. Vol. (3)2013, p.1801.

DOI: 10.1021/cs4004112

Google Scholar

[23] C. R. Michel, A. H. Martínez-Preciado: Sensors and Actuators B: Chemical, Vol. 197( 2014), p.177.

Google Scholar

[24] N. F. Hamedani, A. R. Mahjoub, A. A. khodadadi, Y. Mortazavi: Sensors and Actuators B: Chemical Vol. 169 (2012), p.67.

Google Scholar

[25] L. Xu, H. Song, J. Hu, Y. Lv, K. Xu: Sensors and Actuators B: Chemical, Vol. 169 (2012), p.261.

Google Scholar

[26] M. Terrones, A. R. Botello-Méndez, J. Campos-Delgado, F. López-Urías, Y I. Vega-Cantú, F. J. Rodríguez-Macías, A. L. Elías, E. Mu˜noz-Sandovald, A. G. Cano-Márquezd, J. Charlierb, H. Terrones: Nano Today Vol. 5 (2010), p.351.

DOI: 10.1016/j.nantod.2010.06.010

Google Scholar

[27] R. C. Haddon: Accounts of chemical research Vol. 46 (2013), p.2191.

Google Scholar

[28] T. Dao, J. Hong, K. Ryu, H. Jeong: Chemical Engineering Journal Vol. 250(2014), p.257.

Google Scholar

[29] A. Paneri, Y. Heo, G. Ehlert, A. Cottrill, H. Sodano, P. Pintauro, S. Moghaddam: Journal of Membrane Science Vol. 467( 2014), p.217.

DOI: 10.1016/j.memsci.2014.05.002

Google Scholar

[30] C. Wang, H. Li, J. Zhao, Y. Zhu, W. Yuan, Y. Zhang: International Journal of Hydrogen Energy Vol. 38 (2013), p.13230.

Google Scholar

[31] S.H. Hsieh, M.C. Hsu, W.L. Liu, W.J. Chen: Applied Surface Science Vol. 277 (2013), p.223.

Google Scholar

[32] J.J. Ren, L.W. Su, X. Qin, M. Yang, J.P. Wei, Z. Zhou, P.W. Shen: Journal of Power Sources Vol. 264 (2014), p.108.

Google Scholar

[33] F. Tu, S. Liu, T. Wu, G. Jin, C. Pan: Powder Technology Vol. 253 (2014), p.580.

Google Scholar

[34] Y. Jin, M. Fang, M. Jia: Applied Surface Science, Vol. 308 (2014), p.333.

Google Scholar

[35] L. Deng, G. Zhang, L. Kang, Z. Lei, C. Liu, Z. Liu: Electrochimica Acta Vol. 112( 2013), p.448.

Google Scholar

[36] D. Phan, G. Chung: Sensors and Actuators B: Chemical Vol. 199 (2014), p.354.

Google Scholar

[37] D. Zhang, J. Tong, B. Xia: Sensors and Actuators B: Chemical Vol. 197 (2014), p.66.

Google Scholar

[38] S. Benítez-Martínez, M. Valcárcel: Sensors and Actuators B: Chemical Vol. 197 (2014), p.350.

Google Scholar

[39] A. Omidvar, A. Mohajeri: Sensors and Actuators B: Chemical Vol. 202(2014), p.622.

Google Scholar

[40] M. Ahmad, E. Ahmed, W. Ahmed, A. Elhissi, Z.L. Hong, N.R. Khalid: Ceramics International Vol. 40 (2014), p.10085.

DOI: 10.1016/j.ceramint.2014.03.184

Google Scholar

[41] W. Oh, K. Ullah, L. Zhu, Z. Meng, S. Ye, S. Sarkar: Materials Science in Semiconductor Processing Vol. 25 (2014), p.34.

Google Scholar

[42] S. Rani, M. Kumar, S. Sharma, D. Kumar, S. Tyagi: Catal Lett Vol. 144 (2014), p.301.

Google Scholar

[43] H. Qin, Y. Xu, J. Kim, T. Hwang, T. Kim: Materials Science and Engineering: B Vol. 184 (2014), p.72.

Google Scholar

[44] X. Bai, X. Zhang, Z. Hua, W. Ma, Z. Dai, X. Huang, H. Gu: Journal of Alloys and Compounds Vol. 599(2014), p.10.

Google Scholar

[45] X. Ma, T. Zhu, H. Xu, G. Li, J. Zheng, A. liu, J. Zhang, H. Du : Anal Bioanal Chem. Vol. 390(2008), p.1133.

Google Scholar

[46] S. Liu, B. Yu, H. Zhang, T. Fei, T. Zhang: Sensors and Actuators B: Chemical Vol. 202 (2014), p.272.

Google Scholar

[47] W. Han, L. Ren, X. Qi, Y. Liu, X. Wei, Z. Huang, J. Zhong: Applied Surface Science Vol. 299(2014), p.12.

Google Scholar

[48] D. Chen, R. Yi, S. Chen, T. Xu, M. L. Gordin, D. Lv, D. Wang: Materials Science and Engineering: B Vol. 185 (2014), p.7.

Google Scholar

[49] J. Xu, H. Sun, Z. Li, S. Lu, X. Zhang, S. Jiang, Q. Zhu, G. S. Zakharova: Solid State Ionics Vol. 262( 2014), p.234.

Google Scholar

[50] L. T. Hoa, H. N. Tien, V. H. Luan, J. S. Chung, S. H. Hur: Sensors and Actuators B: Chemical Vol. 185( 2013), p.701.

Google Scholar

[51] Q. Wang, C. Zhang, W. Shan, L. Xing, X. Xue: Materials Letters Vol. 118(2014), p.66.

Google Scholar

[52] H. Chen, F. Feng, Z. Hu, F. Liu, W. Gong, K. Xiang: Transactions of Nonferrous Metals Society of China Vol. 22 (2012), p.2523.

Google Scholar

[53] T. Liu, G. Shao, M. Ji, G. Wang: Journal of Solid State Chemistry Vol. 215 (2014), p.160.

Google Scholar

[54] Y. Lei, F. Chen, R. Li, J. Xu: Applied Surface Science Vol. 308 (2014), p.206.

Google Scholar

[55] B. Zeng, X. Chen, C. Chen, X. Ning, W. Deng: Journal of Alloys and Compounds Vol. 582(2014), p.774.

Google Scholar

[56] K. Ullah, Z. Meng, S. Ye, L. Zhu, W. Oh: Journal of Industrial and Engineering Chemistry Vol. 20(2014), p.1035.

Google Scholar

[57] M. F. P. Silva, H. C. J. F. Costa, E. R. Triboni, M. Politi, P. C. Isolani: Journal of Therm Anal Calorim Vol. 107(2012), p.257.

Google Scholar

[58] K. Huang , Y. H. Li , S. Lin ,. Liang , X. Xu, Y. F . Zhou , D. Y. Fan, H. J. Yang, P. L. Lang, R . Zhang, Y. G. Wang, M . Lei: Materials Letters Vol. 124(2014), p.223.

Google Scholar

[59] Q. Su, L. Chang, J. Zhang, G. Du, and B. Xu: Journal of. physical chemistry Vol. 117(2013), p.4292.

Google Scholar

[60] J. Trujillo-Reyes, A. R. Vilchis-Nestor, S. Majumdara, J.R. Peralta-Videa, J.L. Gardea-Torresdey: Journal of Hazardous Materials Vol. 263 (2013), p.677.

DOI: 10.1016/j.jhazmat.2013.10.030

Google Scholar

[61] J. Hu, Y. Zhou, M. He, X. Yang: Optical Materials Vol. 36 (2013), p.271.

Google Scholar

[62] K. Liu, C. Kuang, M. Zhong, Y. Shi, F. Chen: Optical Materials Vol. 35(2013), p.2710.

Google Scholar

[63] X. Wang, B. Zhai, M. Yang, W. Han, X. Shao: Materials Letters Vol. 112(2013), p.90.

Google Scholar

[64] X. Ma, M. Wang, G. Li, H. Chen, and R. Bai: Materials Chemistry and Physics Vol. 98 (2006), p.241.

Google Scholar

[65] X. Ma, A. Liu, H. Xu, G. Li: Colloid and Polymer Science Vol. 285 (2007), p.1631.

Google Scholar

[66] X. Ma, H. Xu, G. Li, M. Wang, H. Chen, and S. Chen: Macromolecular Materials and Engineering Vol. 291(2006), p.1539.

Google Scholar

[67] X. Ma, Y. Wang, M. Gao, H. Xu, and G. Li: Catalysis Today Vol. 158(2010), p.459.

Google Scholar

[68] Z. Pei, X. Ma, P. Ding, W. Zhang, Z. Luo and G. Li: Sensors Vol. 10(2010), p.8275.

Google Scholar

[69] X. Ma, M. Gao, X. He, and G Li: Materials Science Forum Vol. 688(2011), p.23.

Google Scholar

[70] Q. Cong, X. He, M. Gao, X. Ma, Guang Li: Materials Research Innovation Vol. 18(2014), p. S740.

Google Scholar

[71] Q. Cong, H. Geng, X. He, M. Gao, X. Ma, G. Li: Materials Research Innovations Vol. 18(2014), p. S30.

Google Scholar