[1]
H.C. Liang, X.Z. Li, Effects of structure of anodic TiO2 nanotube arrays on photocatalytic activity for the degradation of 2, 3-dichlorophenol in aqueous solution, J. Hazard. Mater. 162 (2009) 1415-1422.
DOI: 10.1016/j.jhazmat.2008.06.033
Google Scholar
[2]
L.M. Wang, N. Wang, L.H. Zhu, H.W. Yu, H.Q. Tang, Photocatalytic reduction of Cr(VI) over different TiO2 photocatalysts and the effects of dissolved organic species, J. Hazard. Mater. 52 (2008) 93-99.
DOI: 10.1016/j.jhazmat.2007.06.063
Google Scholar
[3]
Z.Q. Gao, S.G. Yang, C. Sun, J. Hong, Microwave assisted photocatalytic degradation of pentachlorophenol in aqueous TiO2 nanotubes suspension, Sep. Purif. Technol. 58 (2007) 24-31.
DOI: 10.1016/j.seppur.2006.12.020
Google Scholar
[4]
T. Tachikawa, M. Fujitsuka, T. Majima, Mechanistic insight into the TiO2 photocatalytic, J. Phys. Chem. C 111 (2007)5259-5275.
DOI: 10.1021/jp069005u
Google Scholar
[5]
B.M. Graetzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737-740.
DOI: 10.1038/353737a0
Google Scholar
[6]
A. Ghicov, H. Tsuchiya, R. Hahn, J.M. Macak, A.G. Mu˜noz, P. Schmuki, TiO2 nanotubes: H+ insertion and strong electrochromic effects, Electrochem. Commun. 8 (2006) 528-532.
DOI: 10.1016/j.elecom.2006.01.015
Google Scholar
[7]
F. Zhang, J. Zhao, T. Shen, H. Hidaka, E. Pelizzetti, N. Serpone, TiO2-assistedphotodegradation of dye pollutant. II. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation, Appl. Catal. B: Environ. 15 (1998).
DOI: 10.1016/s0926-3373(97)00043-x
Google Scholar
[8]
L.X. Yang, Y. Xiao, S.H. Liu, Y. Li, Q.Y. Cai, S.L. Luo, G.M. Zeng, Photocatalytic reduction of Cr(VI) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid, Appl. Catal. B: Environ. 94 (2010) 142-149.
DOI: 10.1016/j.apcatb.2009.11.002
Google Scholar
[9]
W.K. Chang, F.J. Xu, X.Y. Mu, L. l. Ji, G.P. Ma, K. Wang, J. Nie, Preparation of titanium dioxide porous thin films via photopolymerization of the colloidal TiO2 dispersion, Materials Chemistry and Physics, 140( 2013), 665-673.
DOI: 10.1016/j.matchemphys.2013.04.021
Google Scholar
[10]
D. Byun, Y. Jin, B. Kim, J.K. Lee, D. Park, Photocatalytic TiO2 deposition by chemicalvapor deposition, J. Hazard Mater. 73(2000), 199-206.
DOI: 10.1016/s0304-3894(99)00179-x
Google Scholar
[11]
S. Boujday, F. Wunsch, P. Portes, J. Francois Bocquet, C. Colbeau-Justin, Photocatalytic and electronic properties of TiO2 pwders elaborated by sol-gel and supercritical drying. Sol Energy Mater Sol Cells. 83(2004)421-433.
DOI: 10.1016/j.solmat.2004.02.035
Google Scholar
[12]
H. Choi, E. Stathatos, D. D. Dionysiou, Sol-gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications. Appl. Catal. B Environ. 63(2006), 60-67.
DOI: 10.1016/j.apcatb.2005.09.012
Google Scholar
[13]
A. Ibrahim, R.S. Lima, C.C. Berndt, B.R. Marple Fatigue and mechanical properties of nanostructured and conventional titania (TiO2) thermal spray coatings. Surf. Coat. Technol. 201(2007), 7589-7596.
DOI: 10.1016/j.surfcoat.2007.02.025
Google Scholar
[14]
G. J. Yang, C.J. Li, Y.Y. Wang, C.X. Li, Origin of preferential orientation of rutile phase in thermally sprayed TiO2 coatings, Mater. Lett. 62(2008), 1670-1672.
DOI: 10.1016/j.matlet.2007.09.056
Google Scholar
[15]
K. Baba, R. Hatada: Synthesis and properties of TiO2 thin films by plasma source ion implantation. Surf. Coat. Technol. 136(2001), 241-243.
DOI: 10.1016/s0257-8972(00)01022-7
Google Scholar
[16]
Y. Choi, S. Yamamoto, T. Umebayashi, M. Yoshikawa,Fabrication and characterization of anatase TiO2 thin film on glass substrate grown by pulsed laser deposition. Solid State Ionics 172(2004), 105-108.
DOI: 10.1016/j.ssi.2004.03.014
Google Scholar
[17]
G. Li, S. Miyake, Characteristics of N-doped TiO2 thin films grown on unheated glass substrate by inductively coupled plasma assisted dc reactive magnetron sputtering. Appl. Surf. Sci. 255(2009), 9149-9153.
DOI: 10.1016/j.apsusc.2009.06.126
Google Scholar
[18]
R. Wasielewski, J. Domaradzki, D. Wojcieszak, D. Kaczmarek, A. Borkowska, E.L. Prociow, et al: Surface characterization of TiO2 thin films obtained by highenergy reactive magnetron sputtering. Applied Surface Science 254(2008), 4396-4400.
DOI: 10.1016/j.apsusc.2008.01.017
Google Scholar
[19]
H. Ogawa, T. Higuchi, A. Nakamura, S. Tokita, D. Miyazaki, T. Hattori, et al. Growth of TiO2 thin film by reactive RF magnetron sputtering using oxygen radical. J. Alloy. Compd. 449(2008), 375-378.
DOI: 10.1016/j.jallcom.2006.02.103
Google Scholar
[20]
B.S. Liu, L.P. Wen, X.J. Zhao, The structure and photocatalytic studies of N-doped TiO2 films prepared by radio frequency reactive magnetron sputtering. Sol. Energy Mater. Sol. Cells . 92(2008), 1-10.
DOI: 10.1016/j.solmat.2007.07.009
Google Scholar
[21]
W.J. Zhang, S.L. Zhu, Y. Li, Wang FH: Photocatalytic Zn-doped TiO2 films prepared by DC reactive magnetron sputtering. Vacuum. 82(2007)328-335.
DOI: 10.1016/j.vacuum.2007.04.036
Google Scholar
[22]
Y.Y. Zhang, M.X. Ma, P.L. Chen, D.R. Yang: Effect of the substrate temperature on the crystallization of TiO2 films prepared by DC reactive magnetron sputtering. J. Cryst. Growth. 300(2007)551-554.
DOI: 10.1016/j.jcrysgro.2007.01.008
Google Scholar
[23]
J.J. Tian, H.M. Deng, L. Sun, H. Kong, P.X. Yang, J.H. Chu. Effects of Co doping on structure and optical properties of TiO2 thin films prepared by sol–gel method; Original Research Article Thin Solid Films, 520( 2012 ) 5146-5150.
DOI: 10.1016/j.tsf.2012.03.125
Google Scholar