Ferroelectric and Photovoltaic Properties of Mn-Doped Bismuth Ferrite Thin Films

Article Preview

Abstract:

Bismuth ferrite is an important material in ferroelectric photovoltaic field, because of its narrow band gap and large polarization. Doping is a common method to further improve the photovoltaic properties of bismuth ferrite. Mn-doped bismuth ferrite thin films were prepared by sol-gel method. The effects of manganese on the crystal structure, ferroelectric and photovoltaic properties have been investigated. The result indicates that Mn-doped bismuth ferrite thin films are single phase and the lattice constant increases with the increase of manganese content. As manganese content increases, the remnant polarization and coercive electric field increase, while the short circuit photocurrent density and power conversion efficiency decrease. The open circuit photovoltage increases first and reaches the maximum and then decreases as manganese content increases. The results indicate that enhanced ferroelectricity caused by addition of manganese doesn’t make improvement on the photovoltaic characteristic.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-140

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.S. Brody and F. Crowne: J. Electron. Mater Vol. 4 (1975), p.955.

Google Scholar

[2] M. Ichiki, H. Furue, T. Kobayashi, R. Maeda, Y. Morikawa, T. Nakada and K. Nonaka: Appl. Phys. Lett Vol. 87 (2005), p.222903.

DOI: 10.1063/1.2128479

Google Scholar

[3] D. Li, L. Wang, D.S. Li, N. Zhou, Z.Q. Feng, X.P. Zhong and D.R. Yang: Appl. Surf. Sci Vol. 264 (2013), p.621.

Google Scholar

[4] S.Y. Yang, J. Seidel, S.J. Byrnes, P. Shafer, C.H. Yang, M.D. Rossell, P. Yu, Y.H. Chu, J.F. Scott, J.W. Ager III, L. W. Martin and R. Ramesh: Nat. Nanotechnol Vol. 5 (2010), p.143.

DOI: 10.1038/nnano.2009.451

Google Scholar

[5] R. Moubah, O. Rousseau, D. Colson, A. Artemenko, M. Maglione and M. Viret: Adv. Funct. Mater Vol. 22 (2012), p.4814.

DOI: 10.1002/adfm.201201150

Google Scholar

[6] F. Yan, G.N. Chen, L. Lu and J.E. Spanier: ACS Nano Vol. 6 (2012), p.2353.

Google Scholar

[7] W. Dong, Y.P. Guo, B. Guo, H.Y. Liu, H. Li and H.Z. Liu: Mater. Lett Vol. 91 (2013), p.359.

Google Scholar

[8] M.S. Bernardo, T. Jardiel, M. Peiteado, A.C. Caballero and M. Villegas: J. Eur. Ceram. Soc Vol. 31 (2011), p.3047.

Google Scholar

[9] X. Xue, G.Q. Tan, H.J. Ren and A. Xia: Ceram. Int Vol. 39 (2013), p.6223.

Google Scholar

[10] C.S. Park, Y. Shon, I.T. Yoon and J.Y. Son: Curr. Appl. Phys Vol. 13 (2013), p.386.

Google Scholar

[11] Y.H. Zhang, S.W. Yu and J.R. Cheng: J. Eur. Ceram. Soc Vol. 30 (2010), p.271.

Google Scholar

[12] S.K. Singh, H. Ishiwara and K. Maruyama: Appl. Phys. Lett Vol. 88 (2006), p.262908.

Google Scholar

[13] Z.B. Lin, W. Cai, W.H. Jiang, C.L. Fu, C. Li and Y.X. Song: Ceram. Int Vol. 39 (2013), p.8729.

Google Scholar

[14] W. Cai, C.L. Fu, W.G. Hu, G. Chen and X.L. Deng: J. Alloy. Compd Vol. 554 (2013), p.64.

Google Scholar

[15] H.R. Liu, Z.L. Liu, X.L. Li and K.L. Yao: Physica B Vol. 400 (2007), p.252.

Google Scholar

[16] Y.J. Xie, Y.P. Guo, W. Dong, B. Guo, H. Li and H.Z. Liu: J. Inorg. Mater Vol. 28 (2013), p.436.

Google Scholar