Influence of Dislocation Density on Micromechanical Characteristics of Cu6Sn5 and Cu3Sn

Article Preview

Abstract:

The influence of dislocation density on micromechanical characteristics of Cu6Sn5 and Cu3Sn was studied by nanoindentation. The dislocation density dependent hardness of Cu6Sn5 and Cu3Sn was quantitative analyzed. High dislocation density increased the critical shear stress corresponding to the first pop-in events and induced micro plastic deformation before the first pop-in events. For Cu6Sn5, dislocation creep and lattice diffusion dominate the high stress regime (HSR) and the low stress regime (LSR), respectively, regardless of the dislocation density. High dislocation density increases the stress exponent (n) of HSR, but decrease n of LSR. Dislocation motion is the dominate creep mechanism of unstrained Cu3Sn. After pre strain, the creep behavior of Cu3Sn was divided into HSR and LSR. But dislocation motion is still the dominate creep mechanism. Potential mechanism of the dislocation density dependent micromechanical characteristics was explained based on our experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-124

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Marques, C. Johnston, P. Grant. Nanomechanical characterization of Sn–Ag–Cu/Cu joints—Part 1: Young's modulus, hardness and deformation mechanisms as a function of temperature. Acta Mater. 61 (2013) 2460-70.

DOI: 10.1016/j.actamat.2013.01.019

Google Scholar

[2] V. Marques, B. Wunderle, C. Johnston, P. Grant. Nanomechanical characterization of Sn–Ag–Cu/Cu joints—Part 2: Nanoindentation creep and its relationship with uniaxial creep as a function of temperature. Acta Mater. 61 (2013) 2471-80.

DOI: 10.1016/j.actamat.2013.01.020

Google Scholar

[3] L. Jiang, N. Chawla. Mechanical properties of Cu6Sn5 intermetallic by micropillar compression testing. Scr. Mater. 63 (2010) 480-3.

DOI: 10.1016/j.scriptamat.2010.05.009

Google Scholar

[4] Y. Kanda, Y. Kariya, Y. Oto. Influence of cyclic strain-hardening exponent on fatigue ductility exponent for a Sn-Ag-Cu micro-solder joint. J. Electron. Mater. 41 (2012) 580-7.

DOI: 10.1007/s11664-011-1830-7

Google Scholar

[5] X. Deng, N. Chawla, K. Chawla, M. Koopman. Deformation behavior of (Cu, Ag)–Sn intermetallics by nanoindentation. Acta Mater. 52 (2004) 4291-303.

DOI: 10.1016/j.actamat.2004.05.046

Google Scholar

[6] N. Fleck, J. Hutchinson. A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49 (2001) 2245-71.

Google Scholar

[7] S. Shim, H. Bei, E. P. George, G.M. Pharr. A different type of indentation size effect. Scr. Mater. 59 (2008) 1095-8.

DOI: 10.1016/j.scriptamat.2008.07.026

Google Scholar

[8] M. Lodes, A. Hartmaier, M. Göken, K. Durst. Influence of dislocation density on the pop-in behavior and indentation size effect in CaF2 single crystals: Experiments and molecular dynamics simulations. Acta Mater. 59 (2011) 4264-73.

DOI: 10.1016/j.actamat.2011.03.050

Google Scholar

[9] P. Sadrabadi, K. Durst, M. Göken. Study on the indentation size effect in CaF2: Dislocation structure and hardness. Acta Mater. 57 (2009) 1281-9.

DOI: 10.1016/j.actamat.2008.11.015

Google Scholar

[10] W.D. Nix, H. Gao. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46 (1998) 411-25.

DOI: 10.1016/s0022-5096(97)00086-0

Google Scholar

[11] Y. Wang, W. Liu, Y. Ma, Y. Huang, Y. Tang, F. Cheng, et al. Indentation size effect and micromechanics characterization of intermetallic compounds in the Au-Sn system. Mater. Sci. Eng: A 610 (2014) 161–170.

DOI: 10.1016/j.msea.2014.05.039

Google Scholar

[12] Y. Wang, W. Liu, Y. Ma, Y. Huang, Y. Tang, H. Luo , et al. Indentation depth dependent micromechanical properties and rate dependent pop-in events of (Au, Cu)5Sn. Mater. Lett. 131 (2014) 57–60.

DOI: 10.1016/j.matlet.2014.05.166

Google Scholar

[13] Y. Wang, W. Liu, Y. Ma, Y. Huang, Y. Tang, F. Cheng. Indentation size effect of stress exponent and hardness in homogeneous duplex eutectic 80Au/20Sn. Mater. Lett. 120 (2014) 151-4.

DOI: 10.1016/j.matlet.2014.01.066

Google Scholar

[14] W.C. Oliver, G.M. Pharr. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7 (1992) 1564-83.

DOI: 10.1557/jmr.1992.1564

Google Scholar

[15] N. Yu, A.A. Polycarpou, T.F. Conry. Tip-radius effect in finite element modeling of sub-50 nm shallow nanoindentation. Thin Solid Films 450 (2004) 295-303.

DOI: 10.1016/j.tsf.2003.10.033

Google Scholar

[16] Y. H uang, F. Zhang, K. Hwang, W. Nix, G. Pharr, G. Feng. A model of size effects in nano-indentation. J. Mech. Phys. Solids 54 (2006) 1668-86.

DOI: 10.1016/j.jmps.2006.02.002

Google Scholar

[17] G. Feng, W.D. Nix. Indentation size effect in MgO. Scr. Mater. 51 (2004) 599-603.

Google Scholar

[18] H. Bei, Y. Gao, S. Shim, E.P. George, G.M. Pharr. Strength differences arising from homogeneous versus heterogeneous dislocation nucleation. Phys. Rev. B 77 (2008) 060103.

DOI: 10.1103/physrevb.77.060103

Google Scholar

[19] G. Liu, M. Song, X. Liu, S. Ni, S. Wang, Y. He, et al. An investigation of the mechanical behaviors of micro-sized tungsten whiskers using nanoindentation. Mater. Sci. Eng: A 594 (2014) 278-86.

DOI: 10.1016/j.msea.2013.11.084

Google Scholar

[20] D. Lorenz, A. Zeckzer, U. Hilpert, P. Grau, H. Johansen, H. Leipner. Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Phys. Rev. B 67 (2003) 172101.

DOI: 10.1103/physrevb.67.172101

Google Scholar

[21] P. Huang, F. Wang, M. Xu, K. Xu, T. Lu. Dependence of strain rate sensitivity upon deformed microstructures in nanocrystalline Cu. Acta Mater. 58 (2010) 5196-205.

DOI: 10.1016/j.actamat.2010.05.055

Google Scholar

[22] M. Kerr, N. Chawla. Creep deformation behavior of Sn–3. 5 Ag solder/Cu couple at small length scales. Acta Mater. 52 (2004) 4527-35.

DOI: 10.1016/j.actamat.2004.06.010

Google Scholar