Effect of Acetic Acid/Water Ratio on the Microstructure and Properties of LaNiO3 Thin Films by Metal Organic Solution Deposition

Article Preview

Abstract:

Highly (100)-oriented LaNiO3 (LNO) thin films were prepared on p-type Si (100) substrates by metal organic solution deposition (MOSD). The LNO thin films were driven by series precursor solutions with different ratio of acetic acid to deionized water (Raaw) and pH values. The dependences of viscosity, pH value and the thermal property of the gel-derived powders of the precursor solution on Raaw values were systematically investigated. AFM images showed that Raaw can dramatically influence the surface roughness. When Raaw changed from 7:1 to 1:1, the surface roughness decreased from 3.695 nm to 1.488 nm. The resistivities of all the films are less than 2.1×10-3Ω·cm. It shows that the precursor solution has strong effect on the microstructure of the thin films and relatively slight effect on the resistivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-93

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.A. Paz-de-Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, J.F. Scott: Nature 374 (1995), 627-629.

DOI: 10.1038/374627a0

Google Scholar

[2] L. Li: Mat. Sci. Eng. R. 29 (2000), 153-181.

Google Scholar

[3] A.L. Kholkin, A. Gruverman, A. Wu, M. Avdeev, P.M. Vilarinho, I.M. Miranda Salvado, J.L. Baptista: Mater. Lett. 50 (2001), 219-224.

DOI: 10.1016/s0167-577x(01)00228-2

Google Scholar

[4] P. Muralt: J. Micromech. Microeng. 10 (2000), 136-146.

Google Scholar

[5] J.K. Li, X. Yao: Mater. Lett. 58 (2004), 3447-3450.

Google Scholar

[6] R.Y. Zheng, C.H. Sim, J. Wang, S. Ramakrishna: J. Am. Ceram. Soc. 91 (2008) 3240-3244.

Google Scholar

[7] J.M. Rondinelli, N.M. Caffrey, S. Sanvito, N.A. Spaldin: Phys. Rev. B 78 (2008) 155107.

Google Scholar

[8] F. Wu, X.M. Li, W.D. Yu, X.D. Gao, X. Zhang: J. Cryst. Growth. 307 (2007) 367-371.

Google Scholar

[9] T. Araki, T. Niwa, Y. Yamada, I. Hirabayashi, J. Shibata, Y. Ikuhara, K. Kato, T. Hirayama: J. Appl. Phys. 92 (2002) 3318-3325.

DOI: 10.1063/1.1499985

Google Scholar

[10] S. Majumdar, H. Huhtinen, H.S. Majumdar, R. Laiho, R. Osterbacka: J. Appl. Phys. 104 (2008) 033910.

Google Scholar

[11] K. Tsubouchi, I. Ohkubo, H. Kumigashira, Y. Matsumoto, T. Ohnishi, M. Lippmaa, H. Koinuma, M. Oshima: Appl. Phys. Lett. 92 (2008) 262109.

DOI: 10.1063/1.2955534

Google Scholar

[12] N. Sama, R. Herdier, D. Jenkins, C. Soyer, D. Remiens, M. Detalle, R. Bouregba: J. Cryst. Growth. 310 (2008) 3299-3302.

DOI: 10.1016/j.jcrysgro.2008.04.025

Google Scholar

[13] K.P. Rajeev, G.V. Shivashankar, A.K. Raychaudhuri: Solid State Commun. 79 (1991) 591-595.

Google Scholar

[14] N. Wakiya, T. Azuma, K. Shinozaki, N. Mizutani: Thin solid Films 410 (2003) 114-120.

DOI: 10.1016/s0040-6090(02)00238-9

Google Scholar

[15] F. Sanchez, C. Ferrater, C. Guerrero, M.V. Garcia-Cuenca, M. Varela: Appl. Phys. A 71 (2000) 59-64.

Google Scholar

[16] S. Miyake, S. Fujihara, T. Kimura: J. Eur. Ceram. Soc. 21 (2001) 1525-1528.

Google Scholar

[17] S.T. Chen, G.S. Wang, Y.Y. Zhang, L.H. Yang, X.L. Dong: J. Am. Ceram. Soc. 90 (2007) 3635-3637.

Google Scholar

[18] X.J. Meng, J.L. Sun, J. Yu, H.J. Ye, S.L. Guo, J.H. Chu: Appl. Surf. Sci. 171 (2001) 68-70.

Google Scholar

[19] A.D. Li, C.Z. Ge, P. Lu, N.B. Ming: Appl. Phys. Lett. 68 (1996) 1347-1349.

Google Scholar