First-Principles Study on Electronic and Optical Properties of Kesterite and Stannite Cu2ZnSnS4 Photovoltaic Absorbers

Article Preview

Abstract:

To find the optical properties of Cu2ZnSnS4 (CZTS) absorber in two crystal structures (kesterite and stannite) which are key factors determining solar cell performance and are based on the electronic structures, a systematical calculation of electronic and optical properties were calculated using density functional theory. The results suggested that the optical properties of CZTS had a rather weak dependence on the (Cu, Zn) cation ordering. Kesterite and stannite CZTS both suited for photovoltaics with large light absorption coefficient ( > 104 cm-1 ) in the visible light region that is the most important part for photovoltaics, and kesterite CZTS had larger light absorption than stannite CZTS exhibiting a more obvious advantage. In the visible light region the reflectivity of CZTS was lower than that of silicon, the absorber material used most widely, which might be in favor of light absorption and cell efficiency. Ground-state structure, electronic transitions relevant to solar light absorption, static dielectric constant and plasma frequency were also investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

80-88

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. P. SURYAWANSHI, G. L. AGAWANE, S. M. BHOSALE, S. W. SHIN, P. S. PATIL, J. H. KIM, A. V. MOHOLKAR, CZTS based thin film solar cells: a status review, Materials Technology. 28(2013) 98-109.

DOI: 10.1179/1753555712y.0000000038

Google Scholar

[2] M. LI, T. WANG, C. XIA, G. SONG, F. CHANG, First-principles calculation of electronic structure and optical properties of Cu2ZnSnS4/Cu2ZnSnSe4, The Chinese Journal of Nonferrous Metals. 22(2012) 1413-1420.

Google Scholar

[3] K. W. SUN, Z. H. SU, Z. L. HAN, F. Y. LIU, Y. Q. LAI, J. LI, Y. X. LIU, Fabrication of flexible Cu2ZnSnS4 (CZTS) solar cells by sulfurizing precursor films deposited via successive ionic layer absorption and reaction method, Acta Phys Sin. 63(2014).

DOI: 10.7498/aps.63.029901

Google Scholar

[4] S. Y. CHEN, X. G. GONG, A. WALSH, S. H. WEI, Recent progress in the theoretical study of Cu2ZnSnS4 and related chalcogenide semiconductors, Physics. 40(2011) 248-258.

Google Scholar

[5] S. Siebentritt, S. Schorr, Kesterites - a challenging material for solar cells, Prog. Phototaics Res. Appl. 20 (2012) 512-519.

DOI: 10.1002/pip.2156

Google Scholar

[6] H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors, Sol. Energy Mater. Sol. Cells. 49 (1997) 407-414.

DOI: 10.1016/s0927-0248(97)00119-0

Google Scholar

[7] D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, The path towards a high-performance solution-processed kesterite solar cell, Sol. Energy Mater. Sol. Cells. 95 (2011) 1421-1436.

DOI: 10.1016/j.solmat.2010.11.028

Google Scholar

[8] B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, S. Guha, Thin film solar cell with 8. 4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber, Prog. Photovoltaics Res. Appl. 21 (2013) 72-76.

DOI: 10.1002/pip.1174

Google Scholar

[9] M.T. Winkler, W. Wang, O. Gunawan, H.J. Hovel, T.K. Todorov, D. B. Mitzi, Optical designs that improve the efficiency of Cu2ZnSn(S, Se)(4) solar cells, Energy and Environmental Science. 7 (2014) 1029-1036.

DOI: 10.1039/c3ee42541j

Google Scholar

[10] S.R. Hall, J.T. Syzmanski, J.M. Stewart, Kesterite, Cu2(Zn, Fe)SnS4, and stannite, Cu2(Fe, Zn)SnS4, structurally similar but distinct minerals, Can. Miner. 16 (1978) 131-137.

DOI: 10.1063/1.4862030

Google Scholar

[11] S.Y. Chen, X.G. Gong, A. Walsh, S.H. Wei, Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds, Phys. Rev. B. 79 (2009) 165211.

DOI: 10.1103/physrevb.79.165211

Google Scholar

[12] J. Paier, R. Asahi, A. Nagoya, G. Kresse, Cu2ZnSnS4 as a potential photovoltaic material: A hybrid Hartree-Fock density functional theory study, Phys. Rev. B. 79 (2009) 115126.

DOI: 10.1103/physrevb.79.115126

Google Scholar

[13] C. Persson, Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4, J. Appl. Phys. 107 (2010) 053710.

Google Scholar

[14] X.C. He, H.L. Shen, First-principles study of elastic and thermo-physical properties of kesterite-type Cu2ZnSnS4, Physica B. 406 (2011) 4604-4607.

DOI: 10.1016/j.physb.2011.09.035

Google Scholar

[15] S.Y. Chen, X.G. Gong, A. Walsh, S.H. Wei, Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4, Appl. Phys. Lett. 96 (2010) 021902.

DOI: 10.1063/1.3275796

Google Scholar

[16] A. Nagoya, R. Asahi, R. Wahl, G. Kresse, Defect formation and phase stability of Cu2ZnSnS4 photovoltaic material, Phys. Rev. B. 81 (2010) 113202.

Google Scholar

[17] S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP, Z. Kristallogr. 220 (2005) 567-570.

DOI: 10.1524/zkri.220.5.567.65075

Google Scholar

[18] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[19] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces – applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B. 46 (1992).

DOI: 10.1103/physrevb.46.6671

Google Scholar

[20] H. Hahn, H. Schulze, Naturwiss. 52 (1965) 426.

Google Scholar

[21] S. Schorr, H. J. Hoebler, M. Tovar, A neutron diffraction study of the stannite-kesterite solid solution series, Eur. J. Mineral. 19 (2007) 65-73.

DOI: 10.1127/0935-1221/2007/0019-0065

Google Scholar

[22] S.Y. Chen, X. G. Gong, A. Walsh, S.H. Wei, Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights, Appl. Phys. Lett. 94 (2009) 041903.

DOI: 10.1063/1.3074499

Google Scholar

[23] K. Zhang, F.Y. Liu, Y.Q. Lai, Y. Li, C. Yan, Z.A. Zhang, J. Li, Y. X. Liu, In situ growth and characterization of Cu2ZnSnS4 thin films by reactive magnetron co-sputtering for solar cells, Acta Phys. Sin. 60 (2011) 028802.

DOI: 10.7498/aps.60.028802

Google Scholar

[24] A. H. Reshak, K. Nouneh, I.V. Kityk, Jiri Bila, S. Auluck, H. Kamarudin, Z. Sekkat, Structural, Electronic and Optical Properties in Earth-Abundant Photovoltaic Absorber of Cu2ZnSnS4 and Cu2ZnSnSe4 from DFT calculations, Int. J. Electrochem. Sci. 9 (2014).

DOI: 10.1016/s1452-3981(23)07770-2

Google Scholar

[25] J.S. Seol, S.Y. Lee, J.C. Lee, H.D. Nam, K.H. Kim, Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process, Solar Energy Mater. Solar Cells. 75 (2003) 155-162.

DOI: 10.1016/s0927-0248(02)00127-7

Google Scholar

[26] H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, S. Miyajima, Development of thin film solar cell based on Cu2ZnSnS4 thin films, Solar Energy Mater. Solar Cells. 65 (2001) 141-148.

DOI: 10.1016/s0927-0248(00)00088-x

Google Scholar

[27] N. MOMOSE, M. T. HTAY, T. YUDASAKA, S. IGARASHI, T. SEKI, S. IWANO, Y. HASHIMOTO, K. ITO, Cu2ZnSnS4 Thin Film Solar Cells Utilizing Sulfurization of Metallic Precursor Prepared by Simultaneous Sputtering of Metal Targets, Jpn J Appl Phys. 50(2011).

DOI: 10.7567/jjap.50.01bg09

Google Scholar

[28] T. Tanaka, T. Nagatomo, D. Kawasaki, M. Nishio, Q. Guo, A. Wakahara, A. Yoshida, H. Ogawa, Preparation of Cu2ZnSnS4 thin films by hybrid sputtering, J. Phys. Chem. Solids. 66 (2005) 1978-(1981).

DOI: 10.1016/j.jpcs.2005.09.037

Google Scholar

[29] R.A. Wibowo, W.S. Kim, E.S. Lee, B. munir, K.H. Kim, Single step preparation of quaternary Cu2ZnSnSe4 thin films by RF magnetron sputtering from binary chalcogenide targets, J. Phys. Chem. Solids. 68 (2007) 1908-(1913).

DOI: 10.1016/j.jpcs.2007.05.022

Google Scholar

[30] R. C. FANG, Solid State Spectroscopy, first ed., Press of University of Science and Technology of China, Hefei, (2001).

Google Scholar