High-Mobility SiC MOSFETs with Chemically Modified Interfaces

Article Preview

Abstract:

Alkali (Rb, Cs) and alkaline earth elements (Sr, Ba) provide SiO2/SiC interface conditions suitable for obtaining high metal-oxide-semiconductor field-effect-transistor (MOSFET) channel mobility on the 4H-SiC Si-face (0001), without the standard nitric oxide (NO) anneal. The alkali elements Rb and Cs result in field-effect mobility (μFE) values >25 cm2/V.s, and the alkaline earth elements Sr and Ba resulted in higher μFE values of 40 and 85 cm2/V.s, respectively. The Ba-modified MOSFETs show a slight decrease in mobility with heating to 150 °C, as expected when mobility is not interface-trap-limited, but phonon-scattering-limited. The interface state density is lower than that obtained with nitric oxide (NO) passivation. Devices with a Ba interface layer maintain stable mobility and threshold voltage under ±2 MV/cm gate bias stress at 175 °C, indicating no mobile ions.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 821-823)

Pages:

749-752

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.D. Kirsch P. Sivasubramani, J. Huang, C.D. Young, M.A. Quevedo-Lopez, H.C. Wen, H. Alshareef, K. Choi, C.S. Park, K. Freeman, M.M. Hussain, G. Bersuker, H.R. Harris, P. Majhi, R. Choi, P. Lysaght, B.H. Lee, H. -H. Tseng, R. Jammy, T.S. Böscke, D.J. Lichtenwalner, J.S. Jur, and A.I. Kingon, Appl. Phys. Lett. 92 (2008).

DOI: 10.1063/1.2890056

Google Scholar

[2] D.J. Lichtenwalner, Lanthanide-based high-K gate dielectric materials, in: S. Kar (Ed. ), High-permittivity Gate Dielectric Materials, Springer-Verlag, Berlin - Heidelberg, 2013, pp.343-369.

DOI: 10.1007/978-3-642-36535-5_9

Google Scholar

[3] G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, R.K. Chanana, R.A. Weller, S.T. Pantelides, L.C. Feldman, O.W. Holland, M.K. Das, J.W. Palmour, IEEE Electron Dev. Lett. 22 (2001) 176-178.

DOI: 10.1109/55.915604

Google Scholar

[4] D. Okamoto, H. Yano, K. Hirata, T. Hatayama, T. Fuyuki, IEEE Electron Dev. Lett. 31 (2010) 710-712.

DOI: 10.1109/led.2010.2047239

Google Scholar

[5] B.R. Tuttle, S. Dhar, S. -H. Ryu, X. Zhu, J.R. Williams, L.C. Feldman, and S.T. Pantelides, J. Appl. Phys. 109 (2011) 023702.

Google Scholar

[6] D.J. Lichtenwalner, J.M. Hydrick, V. Vankova, V. Misra, J. -P. Maria, and A.I. Kingon, Electrochemical Society (ECS) Trans. 3 (2006) 449-460.

DOI: 10.1149/1.2355734

Google Scholar

[7] J. Robertson and B. Falabretti, Mat. Sci. & Eng. B 135 (2006) 267.

Google Scholar

[8] P. Soukiassian, T. M. Gentle, M.H. Bakshi and Z. Hurych, J. Appl. Phys. 60 (1986) 4339-4341.

Google Scholar

[9] F. Allerstam, H.Ö. Ólafsson, G. Gudjónsson, D. Dochev, E.Ö. Sveinbjörnsson, T. Rödle and R. Jos, J. Appl. Phys. 101 (2007) 124502.

DOI: 10.1063/1.2745321

Google Scholar

[10] W. C. Fan and A. Ignatiev, Phys. Rev. B, 44 (1991) 3110-3114.

Google Scholar

[11] P.D. Kirsch and J.G. Ekerdt, J. Vac. Sci. Technol. A19 (2001) 207-214.

Google Scholar