Joining of Zirconia Reinforced Metal-Matrix Composites

Article Preview

Abstract:

Metal-matrix composite materials, based on a metastable austenitic stainless steel reinforced with a magnesia partially stabilised zirconia have been prepared by a ceramics-derived extrusion technology. Using this powder metallurgical method enables the shaping of lightweight cellular structures as well as bulk specimens with a variety of steel/ceramic ratios at room temperature. However, the extrusion of composite structures is limited by the uniform cross section throughout its entire length. Joining of these metal-matrix composite preforms after sintering by conventional welding techniques is a challenging task. The presence of ceramic fractions may lead to several complications and the subsequent heat exposure during joining may initiate phase transformations in both metastable components resulting in a deterioration of the mechanical properties of the composite material. An adapted ceramics-derived joining technology allows the combination of varying TRIP-steel/zirconia composite materials. The main features are the machining and joining of the parts in their dry green state at room temperature before their thermal treatment. Thus, the material’s consolidation and the formation of the joint take place simultaneously. The ability of joining different parts offers the possibility to create structures for complex applications and testing conditions. The key to advanced properties of the joining zone are the base materials, the surface treatment of the parts, and the paste used for joining. The joining process of different base materials, the mechanical properties, and the microstructure of sinter-joint samples are presented.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

498-505

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.U. Kainer, Metal Matrix Composites: Custom-made Materials for Automotive and Aerospace Engineering, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, (2006).

DOI: 10.1080/10426910701884301

Google Scholar

[2] Y. Guo, Y. Zhou, X. Duan, D. Li, T. Lei, Microstructure and Performance of Y-PSZ/TRIP Steel Composites, J. Mat. Science Technol., 19 (2003) 137-140.

Google Scholar

[3] A. Alavi Nia, S.B. Razavi, G.H. Majzoobi, Ballistic limit determination of aluminum honeycombs- Experimental Study, Mater. Sci. Eng., 488 (2008) 273-280.

DOI: 10.1016/j.msea.2007.11.044

Google Scholar

[4] C.G. Aneziris, W. Schärfl, H. Biermann, U. Martin, Energy absorbing TRIP-steel/Mg-PSZ composite - honeycomb structures based on ceramic extrusion at room temperature, Int. J. Appl. Ceram. Technol., 6 (2009) 727-735.

DOI: 10.1111/j.1744-7402.2008.02321.x

Google Scholar

[5] S. Martin, S. Decker, L. Krüger, U. Martin, D. Rafaja, Microstructure Changes in TRIP Steel/Mg-PSZ Composites Induced by Low Compressive Deformation, Adv. Eng. Mater., 15 (2013) 600-608.

DOI: 10.1002/adem.201200330

Google Scholar

[6] D. Ehinger, L. Krüger, U. Martin, C. Weigelt, C.G. Aneziris, Temperature Effecs on the Deformation Behavior of High-Density TRIP Steel and Particle-Reinforced TRIP Steel/Zirconia Honeycombs under Quasi-Static Compressive Loading, Adv. Eng. Mater., 15 (2013).

DOI: 10.1002/adem.201200345

Google Scholar

[7] S. Martin, S. Richter, S. Decker, U. Martin, L. Krüger, D. Rafaja, Reinforcing Mechanism of Mg-PSZ Particles in Highly-Alloyed TRIP Steel, Steel Res. Int., 82 (2011) 1133-1140.

DOI: 10.1002/srin.201100099

Google Scholar

[8] C. Weigelt, C.G. Aneziris, D. Ehinger, R. Eckner, L. Krüger, C. Ullrich, D. Rafaja, Effect of zirconia and aluminium titanate on the mechanical properties of transformation-induced plasticity-matrix composite materials, J. Compos. Mater., (2015).

DOI: 10.1177/0021998314567698

Google Scholar

[9] C. Weigelt, C.G. Aneziris, H. Berek, D. Ehinger, U. Martin, Martensitic phase transformation in TRIP-steel / Mg-PSZ honeycomb composite materials on mechanical load, Adv. Eng. Mater., 14 (2012) 53-61.

DOI: 10.1002/adem.201100126

Google Scholar

[10] C. Weigelt, C.G. Aneziris, A. Yanina, S. Guk, Ceramic Processing for TRIP-Steel/Mg-PSZ Composite Materials for Mechanical Applications, Steel Res. Int., 82 (2011) 1080-1086.

DOI: 10.1002/srin.201100073

Google Scholar

[11] A.G. Mamalis, M. Robinson, D.E. Manolakos, G.A. Demosthenous, M.B. Ioannidis, J. Carruthers, Crashworthy capability of composite material structures, Compos. Struct., 37 (1997) 109-134.

DOI: 10.1016/s0263-8223(97)80005-0

Google Scholar

[12] G.C. Jacob, J.F. Fellers, S. Simunovic, J.M. Starbuck, Energy Absorption in Polymer Composites for Automotive Crashworthiness, J. Compos. Mater., 36 (2002) 813-850.

DOI: 10.1177/0021998302036007164

Google Scholar

[13] Z. Chen, K. Ikeda, T. Murakami, T. Takeda, Extrusion of Metal–Ceramic Composite Pipes, J. Amer. Cer. Soc., 83 (2000) 1081-1086.

DOI: 10.1111/j.1151-2916.2000.tb01334.x

Google Scholar

[14] K. Suganuma, Y. Miyamoto, M. Koizumi, Joining of ceramics and metals, Annu. Rev. Mater. Sci., 18 (1988) 47-73.

DOI: 10.1146/annurev.ms.18.080188.000403

Google Scholar

[15] C.L. Chen, P. Wang, G. J., Tatlock, Phase transformations in yttrium-aluminium oxides in friction stir welded and recrystallised PM2000 alloys, Mater. High Temp., 26 (2009) 299-303.

DOI: 10.3184/096034009x465211

Google Scholar

[16] C. Weigelt, S. Giersberg, C. Wenzel, C.G. Aneziris, Screening of the Interactions Between Mg-PSZ and TRIP-Steel and Its Alloys During Sintering, Adv. Eng. Mater., 12 (2010) 486-492.

DOI: 10.1002/adem.200900303

Google Scholar

[17] H. Berek, A. Yanina, C. Weigelt, C.G. Aneziris, Determination of the phase distribution in sintered TRIP-matrix / Mg-PSZ composites using EBSD, Steel Res. Int., 82 (2011) 1094-1100.

DOI: 10.1002/srin.201100064

Google Scholar