Comparative Study of Selective Laser Melting and Direct Laser Metal Deposition of Ni3Al Intermetallic Alloy

Article Preview

Abstract:

The Ni3Al intermetallics involve more attention because of inherent material properties especially interesting in high temperature application. In this study the Selective laser melting (SLM) and Direct laser metal deposition (DLMD) are used to manufacture the single-tracks and layers. For the comparison of the methods, the optical microscopy, SEM, XRD and EDX microelement analysis were involved. The materials show no significant differences but each SLM and DLMD have the target application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-111

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Majumdar D., Manna I. Laser material processing. Int Mater Rev 2011; 56(5-6): 341-388.

Google Scholar

[2] Smurov I. Y., Yakovlev A. Laser-assisted direct manufacturing of functionally graded 3D objects by coaxial powder injection. P Soc Photo-Opt Ins 2004: 27-37.

DOI: 10.1117/12.555544

Google Scholar

[3] Yadroitsev I., Smurov I. Selective laser melting technology: from the single laser melted track stability to 3D parts of complex shape. Phys Procedia 2010; 5: 551-560.

DOI: 10.1016/j.phpro.2010.08.083

Google Scholar

[4] Uriondo A., Esperon-Miguez M., Perinpanayagam S. The present and future of additive manufacturing in the aerospace sector: A review of important aspects. Proc Inst Mech Eng G J Aerosp Eng 2015: 1-16.

DOI: 10.1177/0954410014568797

Google Scholar

[5] Yadroitsev, I., Gusarov, A., Yadroitsava, I., & Smurov, I. Single track formation in selective laser melting of metal powders. J Mater Process Tech 2010; 210(12): 1624-1631.

DOI: 10.1016/j.jmatprotec.2010.05.010

Google Scholar

[6] Novichenko, D., Marants, A., Thivillon, L., Bertrand, P. H., & Smurov, I. Metal matrix composite material by direct metal deposition. Phys Procedia 2011; 12: 296-302.

DOI: 10.1016/j.phpro.2011.03.038

Google Scholar

[7] Shishkovsky I.V. Laser controlled intermetallics synthesis during surface cladding In: [J. Lawrence et al. ] Laser Surface Engineering. Processes and applications. Woodhead Publishing Series in Electronic and Optical Materials, Elsevier Science & Technology; Ch11, 2015, pp.237-286.

DOI: 10.1016/b978-1-78242-074-3.00011-8

Google Scholar

[8] Grinberg B.A., Ivanov M.A. Intermetallidy Ni3Al i TiAl: mikrostruktura, deformatsionnoye povedeniye. [in Russian] Yekaterinburg: UrO RAN, 2002 p.360.

Google Scholar

[9] Zhu S. et al. Ni3Al matrix high temperature self-lubricating composites. Tribol Int 2011; 44(4): 445-453.

Google Scholar

[10] Yu, Y.; Zhou, J.; Jianmin Chen J. et al.: Preparation, microstructure and tribological behavior of laser cladding NiAl intermetallic compound coatings. Wear 2012; 274–275: 298–305.

DOI: 10.1016/j.wear.2011.09.011

Google Scholar

[11] Duraiselvam M. et al. Cavitation erosion resistance of AISI 420 martensitic stainless steel laser-clad with nickel aluminide intermetallic composites and matrix composites with TiC reinforcement. Surf Coat Technol 2006; 201(3): 1289-1295.

DOI: 10.1016/j.surfcoat.2006.01.054

Google Scholar

[12] Bazyleva O. A. et al. Structure, Chemical Composition, and Phase Composition of Intermetallic Alloy VKNA-1V After High-Temperature Heat Treatment and Process Heating. Met Sci Heat Treat 2014; 56(5-6): 229-234.

DOI: 10.1007/s11041-014-9737-6

Google Scholar

[13] Cao G. et al. The oxidation of nanocrystalline Ni3Al fabricated by mechanical alloying and spark plasma sintering. Intermetallics 2007; 15(12): 1672-1677.

DOI: 10.1016/j.intermet.2007.07.003

Google Scholar

[14] Kotoban D., Grigoriev S., Shishkovsky I. Study of 3D laser cladding for Ni85Al15 superalloy. Phys Procedia 2014; 56: 262-268.

DOI: 10.1016/j.phpro.2014.08.170

Google Scholar

[15] Podrabinnik P., Grigoriev S., Shishkovsky I. Laser post annealing of cold-sprayed Al/alumina–Ni composite coatings. Surf Coat Technol 2015; 271: 265–268.

DOI: 10.1016/j.surfcoat.2014.11.042

Google Scholar

[16] Shishkovsky, I.V.; Makarenko, A.G.; Petrov A.L.: Conditions for SHS of intermetallic compounds with selective laser sintering of powdered compositions. Combust Explo Shock 1999; 35(2): 166-170.

DOI: 10.1007/bf02674431

Google Scholar

[17] Zhang L. et al. Preparation and properties of the Ni-Al/Fe-Al intermetallics composite coating produced by plasma cladding. Int J Min Met Mater 2011; 18(6): 725-730.

DOI: 10.1007/s12613-011-0503-0

Google Scholar

[18] Smurov I. Laser cladding and laser assisted direct manufacturing. Surf Coat Technol 2008; 202(18): 4496-4502.

DOI: 10.1016/j.surfcoat.2008.04.033

Google Scholar

[19] Yadroitsev I., Bertrand P., Smurov I. Parametric analysis of the selective laser melting process. Appl Surf Sci 2007; 253(19): 8064-8069.

DOI: 10.1016/j.apsusc.2007.02.088

Google Scholar

[20] Deevi, S. C., and V. K. Sikk. Exo-Melt TM process for melting and casting intermetallics. Intermetallics 1997; 5(1): 17-27.

DOI: 10.1016/s0966-9795(96)00067-2

Google Scholar

[21] Nageswara R. M. Materials for Gas Turbines – An Overview In: [Ernesto B. ] Advances in Gas Turbine Technology. Rieka, Croatia: InTech, 2011, pp.293-313.

Google Scholar