[1]
T. Xie, Y.L. He, Z.J. Hu, Theoretical study on thermal conductivities of silica aerogel composite insulating material, Int. J. Heat Mass Transfer. 58 (2013) 540-552.
DOI: 10.1016/j.ijheatmasstransfer.2012.11.016
Google Scholar
[2]
G.S. Wei, Y.S. Liu, X.X. Zhang, et al. Thermal conductivities study on silica aerogel and its composite insulation materials, Int. J. Heat Mass Transfer. 54 (2011) 2355-2366.
DOI: 10.1016/j.ijheatmasstransfer.2011.02.026
Google Scholar
[3]
Y.G. Kwon, S.Y. Choi, Ambient-dried silica aerogel doped with TiO2 powder for thermal insulation, J. Mater. Sci. 35 (2000) 6075-6079.
Google Scholar
[4]
X. Lu, M.C. Arduini-Schuster, J. Kuhn, et al. Thermal conductivity of monolithic organic aerogels, Science. 255 (1992) 971-972.
DOI: 10.1126/science.255.5047.971
Google Scholar
[5]
X.D. Wang, D. Sun, Y.Y. Duan, et al. Radiative characteristics of opacifier-loaded silica aerogel composites, J. Non-Cryst. Solids. 375 (2013) 31-39.
DOI: 10.1016/j.jnoncrysol.2013.04.058
Google Scholar
[6]
Y.N. Kim, G.N. Shao, S.J. Jeon, et al. Sol-gel synthesis of sodium silicate and titanium oxychloride based TiO2-SiO2 aerogels and their photocatalytic property under UV irradiation, Chem. Eng. J. 231 (2013) 502-511.
DOI: 10.1016/j.cej.2013.07.072
Google Scholar
[7]
Z.S. Deng, J. Wang, A. Wu, et al. High strength SiO2 aerogel insulation, J. Non-Cryst. Solids 225 (1998) 101-104.
DOI: 10.1016/s0022-3093(98)00106-9
Google Scholar
[8]
M.A.B. Meador, E. McMillon, A. Sandberg, et al. Dielectric and other properties of polyimide aerogels containing fluorinated blocks, Appl. Mater. Interfaces. 6 (2014) 6062-6068.
DOI: 10.1021/am405106h
Google Scholar
[9]
H.T. Anna , J.Y. Chang , Q. Zhou, et al. Catalytic hydrogen sensing using microheated platinum nanoparticle-loaded grapheme aerogel, Sensor Actuat B 206 (2015) 399-406.
DOI: 10.1016/j.snb.2014.09.057
Google Scholar
[10]
H.X. Zhang , Y.J. Qiao, X.H. Zhang, et al. Structural and thermal study of highly porous nanocomposite SiO2-based aerogels, J. Non-Cryst. Solids. 356 (2010) 879-883.
DOI: 10.1016/j.jnoncrysol.2010.01.003
Google Scholar
[11]
C. Beck, T. Mallat, T. Burgi, et al. Nature of active sites in sol-gel TiO2-SiO2 epoxidation catalysts, J Catal. 204 (2001) 428-439.
DOI: 10.1006/jcat.2001.3407
Google Scholar
[12]
B. Malinowska,J. Walendziewski, D. Robert, et al. The study of photocatalytic activities of titania and titania-silica aerogels, Appl. Catal. B, 46 (2003) 441-451.
DOI: 10.1016/s0926-3373(03)00273-x
Google Scholar
[13]
S.L. Cao, K.L. Yeung, P.L. Yue, Preparation of freestanding and crack-free titania-silica aerogels and their performance for gas phase, photocatalytic oxidation of VOCs, Appl. Catal. B, 68 (2006) 99-108.
DOI: 10.1016/j.apcatb.2006.07.022
Google Scholar
[14]
N. Yao, S.L. Cao, K.L. Yeung, Mesoporous TiO2-SiO2 aerogels with hierarchal pore structures, Micropor. Mesopor. Mater. 117 (2009) 570-579.
DOI: 10.1016/j.micromeso.2008.08.020
Google Scholar
[15]
J. Wang, B. Zhou, J. Shen, et al. Low density and high effective silica-aerogel doped with TiO2 powder and ceramic fibers, J. Functional Mater. 27 (1996) 167-170.
Google Scholar
[16]
J. Wang, J. Kuhn, X. Lu, Monolithic silica aerogel insulation doped with TiO2 powder and ceramic fibers, J. Non-Cryst. Solids. 186 (1995) 296-300.
DOI: 10.1016/0022-3093(95)00068-2
Google Scholar
[17]
J. Kuhn, T. Gleissner, M.C. Arduini-Schuster, et al. Integration of mineral powders into SiO2 aerogels, J. Non-Cryst. Solids. 186 (1995) 291-295.
DOI: 10.1016/0022-3093(95)00067-4
Google Scholar
[18]
J.F. Huang, Sol-gel theory and technology, first ed., Chemistry Industry Press, Beijing, (2005).
Google Scholar
[19]
J. Wang, Q. Li, J. Shen, et al. Ultra-low density SiO2 aerogels prepared by two steps, Atomic Energy Sci. Technol. 30 (1) (1996) 41-45.
Google Scholar
[20]
L. Luo, T.C. Adrienne, M.H. Fan, Preparation and application of nanoglued binary titania-silica aerogel, J. Hazard Mater. 161 (2009) 175-182.
DOI: 10.1016/j.jhazmat.2008.03.105
Google Scholar
[21]
Q.F. Gao, Nano-porous silica, alumina aerogels and thermal super-insulation composites, PhD dissertation, National University of Defense and Technology, Changsha, China. (2009).
Google Scholar
[22]
X.K. Wang, J.X. Liu, F. Shi, et al. Influences of heat-treatment on the microstructure and properties of silica-titania composite aerogels, J Porous Mater. 21 (2014) 293-301.
DOI: 10.1007/s10934-013-9774-3
Google Scholar
[23]
X.B. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev. 107 (2007) 2891-2959.
DOI: 10.1021/cr0500535
Google Scholar
[24]
G.N. Shao, A. Hilonga, S.J. Jeon, et al. Influence of titania content on the mesostructure of titania-silica composites and their photocatalytic activity, Powder Technol. 233 (2013) 123-130.
DOI: 10.1016/j.powtec.2012.08.025
Google Scholar
[25]
X.T. Gao, I.E. Wachs, Titania-silica as catalysts: molecular structural characteristics and physic-chemical properties, Catal. Today 51 (1999) 233-254.
DOI: 10.1016/s0920-5861(99)00048-6
Google Scholar
[26]
F. Despetis, S. Calas, P. Etienne, et al. Effect of oxidation treatment on the crack propagation rate of aerogels, J. Non-Cryst. Solids. 285 (2001) 251-255.
DOI: 10.1016/s0022-3093(01)00463-x
Google Scholar
[27]
P. Jean, D. Florence, C. Sylvie, et al. Comparison between sintered and compressed aerogels, Opt. Mater. 26 (2004) 167-172.
Google Scholar