Effect of Heat-Treatment on the Microstructure and Properties of SiO2-TiO2 Aerogels Synthesized via Supercritical Drying

Article Preview

Abstract:

Monolithic SiO2-TiO2 aerogels were prepared via supercritical drying using tetraethoxysilane and tetrabutyltitanate as precursors and ethanol as solvent. Influence of the heat-treatment on the microstructure and properties of SiO2-TiO2 aerogels were investigated in detail. The results showed that the as-prepared SiO2-TiO2 aerogels had low densities, high specific surface areas, small average pore diameters, and three-dimensional nanoporous structures. The anatase TiO2 phase of SiO2-TiO2 aerogels could form during supercritical drying process, and the transition to rutile TiO2 phase occurred after experiencing 1200°C for 2 h. SiO2-TiO2 aerogels containing 30 wt% TiO2 (ST3) still presented relatively high specific surface area of 451 m2/g even they undergo the treatment of 1000°C for 2 h. And the SEM images indicated that the agglomerated particles derived from ST3 appeared gradually to some extent. The glassy luster of ST3 heat-treated at 1200°C for 2 h illuminates SiO2 started to vitrify. Besides, the thermal conductivity of ST3 at room temperature is up to 0.03257 W·m-1·K-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

770-776

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Xie, Y.L. He, Z.J. Hu, Theoretical study on thermal conductivities of silica aerogel composite insulating material, Int. J. Heat Mass Transfer. 58 (2013) 540-552.

DOI: 10.1016/j.ijheatmasstransfer.2012.11.016

Google Scholar

[2] G.S. Wei, Y.S. Liu, X.X. Zhang, et al. Thermal conductivities study on silica aerogel and its composite insulation materials, Int. J. Heat Mass Transfer. 54 (2011) 2355-2366.

DOI: 10.1016/j.ijheatmasstransfer.2011.02.026

Google Scholar

[3] Y.G. Kwon, S.Y. Choi, Ambient-dried silica aerogel doped with TiO2 powder for thermal insulation, J. Mater. Sci. 35 (2000) 6075-6079.

Google Scholar

[4] X. Lu, M.C. Arduini-Schuster, J. Kuhn, et al. Thermal conductivity of monolithic organic aerogels, Science. 255 (1992) 971-972.

DOI: 10.1126/science.255.5047.971

Google Scholar

[5] X.D. Wang, D. Sun, Y.Y. Duan, et al. Radiative characteristics of opacifier-loaded silica aerogel composites, J. Non-Cryst. Solids. 375 (2013) 31-39.

DOI: 10.1016/j.jnoncrysol.2013.04.058

Google Scholar

[6] Y.N. Kim, G.N. Shao, S.J. Jeon, et al. Sol-gel synthesis of sodium silicate and titanium oxychloride based TiO2-SiO2 aerogels and their photocatalytic property under UV irradiation, Chem. Eng. J. 231 (2013) 502-511.

DOI: 10.1016/j.cej.2013.07.072

Google Scholar

[7] Z.S. Deng, J. Wang, A. Wu, et al. High strength SiO2 aerogel insulation, J. Non-Cryst. Solids 225 (1998) 101-104.

DOI: 10.1016/s0022-3093(98)00106-9

Google Scholar

[8] M.A.B. Meador, E. McMillon, A. Sandberg, et al. Dielectric and other properties of polyimide aerogels containing fluorinated blocks, Appl. Mater. Interfaces. 6 (2014) 6062-6068.

DOI: 10.1021/am405106h

Google Scholar

[9] H.T. Anna , J.Y. Chang , Q. Zhou, et al. Catalytic hydrogen sensing using microheated platinum nanoparticle-loaded grapheme aerogel, Sensor Actuat B 206 (2015) 399-406.

DOI: 10.1016/j.snb.2014.09.057

Google Scholar

[10] H.X. Zhang , Y.J. Qiao, X.H. Zhang, et al. Structural and thermal study of highly porous nanocomposite SiO2-based aerogels, J. Non-Cryst. Solids. 356 (2010) 879-883.

DOI: 10.1016/j.jnoncrysol.2010.01.003

Google Scholar

[11] C. Beck, T. Mallat, T. Burgi, et al. Nature of active sites in sol-gel TiO2-SiO2 epoxidation catalysts, J Catal. 204 (2001) 428-439.

DOI: 10.1006/jcat.2001.3407

Google Scholar

[12] B. Malinowska,J. Walendziewski, D. Robert, et al. The study of photocatalytic activities of titania and titania-silica aerogels, Appl. Catal. B, 46 (2003) 441-451.

DOI: 10.1016/s0926-3373(03)00273-x

Google Scholar

[13] S.L. Cao, K.L. Yeung, P.L. Yue, Preparation of freestanding and crack-free titania-silica aerogels and their performance for gas phase, photocatalytic oxidation of VOCs, Appl. Catal. B, 68 (2006) 99-108.

DOI: 10.1016/j.apcatb.2006.07.022

Google Scholar

[14] N. Yao, S.L. Cao, K.L. Yeung, Mesoporous TiO2-SiO2 aerogels with hierarchal pore structures, Micropor. Mesopor. Mater. 117 (2009) 570-579.

DOI: 10.1016/j.micromeso.2008.08.020

Google Scholar

[15] J. Wang, B. Zhou, J. Shen, et al. Low density and high effective silica-aerogel doped with TiO2 powder and ceramic fibers, J. Functional Mater. 27 (1996) 167-170.

Google Scholar

[16] J. Wang, J. Kuhn, X. Lu, Monolithic silica aerogel insulation doped with TiO2 powder and ceramic fibers, J. Non-Cryst. Solids. 186 (1995) 296-300.

DOI: 10.1016/0022-3093(95)00068-2

Google Scholar

[17] J. Kuhn, T. Gleissner, M.C. Arduini-Schuster, et al. Integration of mineral powders into SiO2 aerogels, J. Non-Cryst. Solids. 186 (1995) 291-295.

DOI: 10.1016/0022-3093(95)00067-4

Google Scholar

[18] J.F. Huang, Sol-gel theory and technology, first ed., Chemistry Industry Press, Beijing, (2005).

Google Scholar

[19] J. Wang, Q. Li, J. Shen, et al. Ultra-low density SiO2 aerogels prepared by two steps, Atomic Energy Sci. Technol. 30 (1) (1996) 41-45.

Google Scholar

[20] L. Luo, T.C. Adrienne, M.H. Fan, Preparation and application of nanoglued binary titania-silica aerogel, J. Hazard Mater. 161 (2009) 175-182.

DOI: 10.1016/j.jhazmat.2008.03.105

Google Scholar

[21] Q.F. Gao, Nano-porous silica, alumina aerogels and thermal super-insulation composites, PhD dissertation, National University of Defense and Technology, Changsha, China. (2009).

Google Scholar

[22] X.K. Wang, J.X. Liu, F. Shi, et al. Influences of heat-treatment on the microstructure and properties of silica-titania composite aerogels, J Porous Mater. 21 (2014) 293-301.

DOI: 10.1007/s10934-013-9774-3

Google Scholar

[23] X.B. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev. 107 (2007) 2891-2959.

DOI: 10.1021/cr0500535

Google Scholar

[24] G.N. Shao, A. Hilonga, S.J. Jeon, et al. Influence of titania content on the mesostructure of titania-silica composites and their photocatalytic activity, Powder Technol. 233 (2013) 123-130.

DOI: 10.1016/j.powtec.2012.08.025

Google Scholar

[25] X.T. Gao, I.E. Wachs, Titania-silica as catalysts: molecular structural characteristics and physic-chemical properties, Catal. Today 51 (1999) 233-254.

DOI: 10.1016/s0920-5861(99)00048-6

Google Scholar

[26] F. Despetis, S. Calas, P. Etienne, et al. Effect of oxidation treatment on the crack propagation rate of aerogels, J. Non-Cryst. Solids. 285 (2001) 251-255.

DOI: 10.1016/s0022-3093(01)00463-x

Google Scholar

[27] P. Jean, D. Florence, C. Sylvie, et al. Comparison between sintered and compressed aerogels, Opt. Mater. 26 (2004) 167-172.

Google Scholar