In-Plane Strain Field Sensor Based on the Semiconductor Film

Article Preview

Abstract:

The ZnO semiconductor multicrystalline film is utilized as the sensing material, and a sensors array is demonstrated in this paper. Based on the coupling effect of piezoelectric and semiconducting, an ultra-high sensitivity to the deformation is obtained that the gauge factor of the single units is derived up to 199, which is 100 times of that of the commercial foil gage (gauge factor = 2). After calibration on every sensing unit, the distribution of the uniform and non-uniform strain applied on the device is measured and mapped by the sensors array successfully. The results show a good application of the device on the deformation field sensing by contact test method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

777-783

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wang Zhong Lin. Piezotronics and Piezo-Phototronics. Springer Berlin Heidelberg. (2012).

Google Scholar

[2] Wu Wenzhuo, Pan Caofeng, Zhang Yan, Wen Xiaonan, Wang Zhong Lin. Piezotronics and piezo-phototronics – From single nanodevices to array of devices and then to integrated functional system. Nano Today. 2013. 8(6). 619-642.

DOI: 10.1016/j.nantod.2013.11.002

Google Scholar

[3] Liu Ying, Zhang Yan, Yang Qing, Niu Simiao, Wang Zhong Lin. Fundamental theories of piezotronics and piezo-phototronics. Nano Energy. (0).

DOI: 10.1016/j.nanoen.2014.11.051

Google Scholar

[4] Wen Xiaonan, Wu Wenzhuo, Pan Caofeng, Hu Youfan, Yang Qing, Lin Wang Zhong. Development and progress in piezotronics. Nano Energy. (0).

Google Scholar

[5] Liu Wei, Zhang Aihua, Zhang Yan, Lin Wang Zhong. First principle simulations of piezotronic transistors. Nano Energy. (0).

DOI: 10.1016/j.nanoen.2014.10.014

Google Scholar

[6] Sze Simon M., Ng Kwok K. Physics of Semiconductor Devices. Wiley-Interscience. (2006).

Google Scholar

[7] Zhang Zheng, Liao Qingliang, Yu Yanhao, Wang Xudong, Zhang Yue. Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering. Nano Energy. 2014. 9(0). 237-244.

DOI: 10.1016/j.nanoen.2014.07.019

Google Scholar

[8] Lu Shengnan, Qi Junjie, Wang ZengZe, Lin Pei, Liu Shuo, Zhang Yue. Size effect in a cantilevered ZnO micro/nanowire and its potential as a performance tunable force sensor. RSC Advances. 2013. 3(42). 19375-19379.

DOI: 10.1039/c3ra42952k

Google Scholar

[9] Wu Jyh Ming, Chen Cheng-Ying, Zhang Yan, Chen Kuan-Hsueh, Yang Ya, Hu Youfan, He Jr-Hau, Wang Zhong Lin. Ultrahigh Sensitive Piezotronic Strain Sensors Based on a ZnSnO3 Nanowire/Microwire. ACS Nano. 2012. 6(5). 4369-4374.

DOI: 10.1021/nn3010558

Google Scholar

[10] Zhou Jun, Gu Yudong, Fei Peng, Mai Wenjie, Gao Yifan, Yang Rusen, Bao Gang, Wang Zhong Lin. Flexible Piezotronic Strain Sensor. Nano Letters. 2008. 8(9). 3035-3040.

DOI: 10.1021/nl802367t

Google Scholar

[11] Zhang Y., Liu Y., Wang Z. L. Fundamental Theory of Piezotronics. ADVANCED MATERIALS. 2011. 23(27). 3004-3013.

DOI: 10.1002/adma.201100906

Google Scholar

[12] Wu Wenzhuo, Wen Xiaonan, Wang Zhonglin, Taxel-Addressable Matrix of Vertical-Nanowire Piezotronic Transistors for Active and Adaptive Tactile Imaging. Science. 2013. 340(6135). 952-957.

DOI: 10.1126/science.1234855

Google Scholar

[13] X. N. Wen, W. Z. Wu, Y. Ding, Z. L. Wang, Adv Mater 2013, 25, 3371.

Google Scholar

[14] Y. F. Hu, B. Klein, Y. J. Su, S. M. Niu, Y. Liu, Z. L. Wang, Nano Lett 2013, 13, 5026.

Google Scholar

[15] Y. Chang, J. Chen, T. Yang, C. Huang, C. Chiu, P. Yeh, W. Wu, Nano Energy 2014, 8, 291.

Google Scholar

[16] S. Shin, Y. Kim, M. H. Lee, J. Jung, J. H. Seol, J. Nah, ACS Nano 2014, 8, 10844.

Google Scholar

[17] Song Ming, Guo Hongbo, Abbas Musharaf, Gong Shengkai. Thermal deformation of Y2O3 partially stabilized ZrO2 coatings by digital image correlation method. Surface and Coatings Technology. 2013. 216(0). 1-7.

DOI: 10.1016/j.surfcoat.2012.09.022

Google Scholar

[18] Xie Huimin, Kang Yilan. Digital image correlation technique. Optics and Lasers in Engineering. 2015. 65(0). 1-2.

Google Scholar