[1]
K.A. Gschneidner Jr., V.K. Pecharsky, and A.O. Tsokol, Recent developments in magnetocaloric materials, Rep. Prog. Phys. 68 (2005) 1479.
DOI: 10.1088/0034-4885/68/6/r04
Google Scholar
[2]
V.K. Pecharsky and K.A. Gschneidner, Giant magnetocaloric effect in Gd2(Si2Ge2), J. Phys. Rev. Lett. 78 (1997) 4494.
Google Scholar
[3]
A. Fujita, S. Fujieda, Y. Hasegawa, Itinerant-electron metamagnetic transition and large magnetocaloric effects in La (FexSi1-x)13 compounds and their hydrides, K. Fukamichi, Phy. Rev. B, 67 (2003) 104416.
DOI: 10.1002/chin.200535243
Google Scholar
[4]
H. Wada and Y. Tanabe, Giant magnetocaloric effect of MnAs1-xSbx, Appl. Phys. Lett. 79 (2001) 3302-3304.
DOI: 10.1063/1.1419048
Google Scholar
[5]
D. T. Cam Thanh, E. Brück, N. T. Trung, J. C. P. Klaasse, K. H. J. Buschow, Z.Q. Ou, O. Tegus, and L. Caron, Structure magnetism and magnetocaloric properties of MnFePSix compounds, J. Appl. Phys. 103 (2008) 07B318.
DOI: 10.1063/1.2836958
Google Scholar
[6]
N. T. Trung, Z. Q. Ou, T. J. Gortenmulder, O. Tegus, K. H. J. Buschow, and E. Brück, Tunable thermal hysteresis in MnFe(P, Ge) compounds, . Appl. Phys. Lett. 94 (2009) 102513.
DOI: 10.1063/1.3095597
Google Scholar
[7]
O. Tegus, E. Brück, K. H. J. Buschow, and F. R. de Boer, Transition-metal-based magnetic refrigerants for room-temperature applications, Nature. 415 (2002) 150-152.
DOI: 10.1038/415150a
Google Scholar
[8]
N. H. Dung, Z. Q. Ou, L. Caron, L. Zhang, D. T. Cam Thanh, G. A. deWijs, R. A. de Groot, K. H. J. Buschow, and E. Brück, Mixed magnetism for refrigeration and energy conversion, Adv. Energy Mater. 1 (2011) 1215-1219.
DOI: 10.1002/aenm.201100252
Google Scholar
[9]
R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida, Magnetic-field-induced shape recovery by reverse phase transformation, Nature. 439 (2006) 957-960.
DOI: 10.1038/nature04493
Google Scholar
[10]
K.G. Sandeman, R. Daou, S. Özcan, J.H. Durrell, N.D. Mathur, D.J. Fray, Negative magnetocaloric effect from highly sensitive metamagnetism in CoMnSi1-xGex, Phys. Rev. B. 74 (2006) 224436.
DOI: 10.1103/physrevb.74.224436
Google Scholar
[11]
F. Guillou, E. Brück, Tuning the metamagnetic transition in the (Co, Fe)MnP system for magnetocaloric purposes, J. Appl. Phys. 114 (2013) 143903.
DOI: 10.1063/1.4824543
Google Scholar
[12]
S.A. Nikitin, G. Myalikgulyev, A.M. Tishin, M.P. Annaorazov, K.A. Asatryan, A.L. Tyurin, The magnetocaloric effect in Fe49Rh51 compound, Phys. Lett. A. 148 (1990) 363-366.
DOI: 10.1016/0375-9601(90)90819-a
Google Scholar
[13]
O. Tegus, E. Brück, L. Zhang, Dagula, K.H.J. Buschow, F.R. de Boer, Magnetic-phase transition and magnetocaloric effects, Physica B. 319 (2002) 174-192.
DOI: 10.1016/s0921-4526(02)01119-5
Google Scholar
[14]
T. Tohei, H. Wada, T. Kanomata, Negative magnetocaloric effect at the antiferromagnetic to ferromagnetic transition of Mn3GaC, J. Appl. Phys. 94 (2003) 1800-1802.
DOI: 10.1063/1.1587265
Google Scholar
[15]
K.G. Sandeman, R. Daou, S. Özcan, J.H. Durrell, N.D. Mathur, D.J. Fray, Negative magnetocaloric effect from highly sensitive metamagnetism in CoMnSi1-xGex, Phys. Rev. B. 74 (2006) 224436.
DOI: 10.1103/physrevb.74.224436
Google Scholar
[16]
L. Ma, F. Guillou, H. Yibole, et al, Structural, magnetic and magnetocaloric properties of (Mn, Co)2(Si, P) compounds, Journal of Alloys and Compounds, J. Alloys Compd. 625 (2015) 95-100.
DOI: 10.1016/j.jallcom.2014.11.072
Google Scholar
[17]
S. Niziol, R. Fruchart, and J. P. Senateur, Magnetic properties of CoMnSi and CoMnSi0. 85Ge0. 15, Phys. Status Solidi A. 51 (1979) K23-K27.
DOI: 10.1002/pssa.2210510142
Google Scholar