Structure and Inverse Magnetocaloric Effect of Mn1.2Co0.8Si0.2P0.8 Compound Prepared by SPS

Article Preview

Abstract:

The single-phase Mn1.2Co0.8Si0.2P0.8 compound was fabricated by the spark plasma sintering (SPS) technology followed by vacuum annealing. The microstructure, Néel temperature (TN) and “inverse” magnetocaloric effect of this compound were investigated. The results show that the structure of Mn1.2Co0.8Si0.2P0.8 compound prepared by SPS is a single phase with precise stoichiometric proportion. Increasing the magnetic field from 0.05 T to 1 T, the TN of the material reduces gradually from 110 k to 45 k, and a splitting of TN appears. The splitting of the antiferro-to-ferromagnetic transition is an intrinsic feature rather than the secondary phase. Though the maxima entropy changes is about 0.6 Jkg-1K-1 at B=5T, the Mn1.2Co0.8Si0.2P0.8 phase synthesized by SPS is more favorable, more overall magnetic moment. In addition to the magnetic refrigeration applications, this compound may be used in thermomagnetic generators.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

860-864

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.A. Gschneidner Jr., V.K. Pecharsky, and A.O. Tsokol, Recent developments in magnetocaloric materials, Rep. Prog. Phys. 68 (2005) 1479.

DOI: 10.1088/0034-4885/68/6/r04

Google Scholar

[2] V.K. Pecharsky and K.A. Gschneidner, Giant magnetocaloric effect in Gd2(Si2Ge2), J. Phys. Rev. Lett. 78 (1997) 4494.

Google Scholar

[3] A. Fujita, S. Fujieda, Y. Hasegawa, Itinerant-electron metamagnetic transition and large magnetocaloric effects in La (FexSi1-x)13 compounds and their hydrides, K. Fukamichi, Phy. Rev. B, 67 (2003) 104416.

DOI: 10.1002/chin.200535243

Google Scholar

[4] H. Wada and Y. Tanabe, Giant magnetocaloric effect of MnAs1-xSbx, Appl. Phys. Lett. 79 (2001) 3302-3304.

DOI: 10.1063/1.1419048

Google Scholar

[5] D. T. Cam Thanh, E. Brück, N. T. Trung, J. C. P. Klaasse, K. H. J. Buschow, Z.Q. Ou, O. Tegus, and L. Caron, Structure magnetism and magnetocaloric properties of MnFePSix compounds, J. Appl. Phys. 103 (2008) 07B318.

DOI: 10.1063/1.2836958

Google Scholar

[6] N. T. Trung, Z. Q. Ou, T. J. Gortenmulder, O. Tegus, K. H. J. Buschow, and E. Brück, Tunable thermal hysteresis in MnFe(P, Ge) compounds, . Appl. Phys. Lett. 94 (2009) 102513.

DOI: 10.1063/1.3095597

Google Scholar

[7] O. Tegus, E. Brück, K. H. J. Buschow, and F. R. de Boer, Transition-metal-based magnetic refrigerants for room-temperature applications, Nature. 415 (2002) 150-152.

DOI: 10.1038/415150a

Google Scholar

[8] N. H. Dung, Z. Q. Ou, L. Caron, L. Zhang, D. T. Cam Thanh, G. A. deWijs, R. A. de Groot, K. H. J. Buschow, and E. Brück, Mixed magnetism for refrigeration and energy conversion, Adv. Energy Mater. 1 (2011) 1215-1219.

DOI: 10.1002/aenm.201100252

Google Scholar

[9] R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida, Magnetic-field-induced shape recovery by reverse phase transformation, Nature. 439 (2006) 957-960.

DOI: 10.1038/nature04493

Google Scholar

[10] K.G. Sandeman, R. Daou, S. Özcan, J.H. Durrell, N.D. Mathur, D.J. Fray, Negative magnetocaloric effect from highly sensitive metamagnetism in CoMnSi1-xGex, Phys. Rev. B. 74 (2006) 224436.

DOI: 10.1103/physrevb.74.224436

Google Scholar

[11] F. Guillou, E. Brück, Tuning the metamagnetic transition in the (Co, Fe)MnP system for magnetocaloric purposes, J. Appl. Phys. 114 (2013) 143903.

DOI: 10.1063/1.4824543

Google Scholar

[12] S.A. Nikitin, G. Myalikgulyev, A.M. Tishin, M.P. Annaorazov, K.A. Asatryan, A.L. Tyurin, The magnetocaloric effect in Fe49Rh51 compound, Phys. Lett. A. 148 (1990) 363-366.

DOI: 10.1016/0375-9601(90)90819-a

Google Scholar

[13] O. Tegus, E. Brück, L. Zhang, Dagula, K.H.J. Buschow, F.R. de Boer, Magnetic-phase transition and magnetocaloric effects, Physica B. 319 (2002) 174-192.

DOI: 10.1016/s0921-4526(02)01119-5

Google Scholar

[14] T. Tohei, H. Wada, T. Kanomata, Negative magnetocaloric effect at the antiferromagnetic to ferromagnetic transition of Mn3GaC, J. Appl. Phys. 94 (2003) 1800-1802.

DOI: 10.1063/1.1587265

Google Scholar

[15] K.G. Sandeman, R. Daou, S. Özcan, J.H. Durrell, N.D. Mathur, D.J. Fray, Negative magnetocaloric effect from highly sensitive metamagnetism in CoMnSi1-xGex, Phys. Rev. B. 74 (2006) 224436.

DOI: 10.1103/physrevb.74.224436

Google Scholar

[16] L. Ma, F. Guillou, H. Yibole, et al, Structural, magnetic and magnetocaloric properties of (Mn, Co)2(Si, P) compounds, Journal of Alloys and Compounds, J. Alloys Compd. 625 (2015) 95-100.

DOI: 10.1016/j.jallcom.2014.11.072

Google Scholar

[17] S. Niziol, R. Fruchart, and J. P. Senateur, Magnetic properties of CoMnSi and CoMnSi0. 85Ge0. 15, Phys. Status Solidi A. 51 (1979) K23-K27.

DOI: 10.1002/pssa.2210510142

Google Scholar