Structural Evolution and Physical Properties of Nano-Crystalline BiFeO3

Article Preview

Abstract:

The effect of temperature on the structural evolution and physical properties of nanocrystalline BiFeO3 compound has been studied systematically. The results show that the compound crystallizes in the hexagonal LiNbO3 type-structure (space group R3c) and the structural characterization was a=b=5.5979 Å, c=13.9163 Å and V=387.43 Å3. The average crystallite size was about 32.5 nm. The Neel temperature was the same in the vacuum and air conditions, but the decomposition temperature in the air condition was higher 190°C than that of the vacuum condition.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

199-204

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Cheong SW and Mostovoy M. Nature Mater 2007; 6: 13.

Google Scholar

[2] L.W. Martin and R. Ramesh: Acta Mater. 60 (2012) 2449.

Google Scholar

[3] C.H. Yang, D. Kan, I. Taeuchi, V. Nagarajan and J. Seidel: Phys. Chem. Chem. Phys. 14 (2012) 15953.

Google Scholar

[4] Y. Wei, X. Wang, J. Jia and X. Wang: Ceram. Int. 38 (2012)3499.

Google Scholar

[5] J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig and R. Ramesh: Science 299 (2003) 1719-1722.

DOI: 10.1126/science.1080615

Google Scholar

[6] J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin and K.M. Rabe: Phys. Rev. B 71 (2005) 014113.

Google Scholar

[7] W. Eerenstein, N.D. Mathur and J.E. Scott: Nature 442 (2006) 759.

Google Scholar

[8] X. Wang, Y. Lin, X. Ding and J. Jiang: J. Alloys Comp. 509 (2011) 6585-6588.

Google Scholar

[9] F. Gao, Y. Yuan, K.F. Wang, X.Y. Chen, F. Chen, J.M. Liu and Z.F. Ren: Appl. Phys. Lett. 89 (2006) 102506.

Google Scholar

[10] W. Luo, L. Zhu, N. Wang, H. Tang, M. Cao and Y. She: Envirn. Sci. Technol. 44 (2010) 1789-1791.

Google Scholar

[11] S. Farhadi, M. Zaidi, J. Mol. Catal. A: Chem, 299 (2009) 18-25.

Google Scholar

[12] I. Sosnowskat, T. Peterlin-Neumaier, and E. Steichele: J. Phys C Solid state phys. 18 (1982) 4835-4836.

Google Scholar

[13] S. Phapale, R. Mishra and D. Das: J. Nucl. Mater. 373 (2008) 137-141.

Google Scholar

[14] S.M. Selbach, M.A. Einarsrud and T. Grande: Chem. Mater. 21 (2009) 169-173.

Google Scholar

[15] J. Lu, L.J. Qiao, P.A. Fu and Y. C. Wu: J. Crys. Growth 318 (2011) 936-941.

Google Scholar

[16] X. Liu, X. Dou, H.Y. Xie and J.F. Chen: Key Eng. Mater. 512-515 (2012) 1235-1239.

Google Scholar

[17] R. Haumout, I.A. Kornev, S. Lisenkov, L. Bellaiche, J. Kreisel and B. Dkhil: Phys. Rev. B78 (2008) 134108.

Google Scholar

[18] R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, G. CATALAN and J.F. Scott: Phys. Rev. B77 (2008) 014100.

Google Scholar

[19] Z.V. Gabbasova, M.D. Kuzmin, A.K. Zvezdin, I.S. Dubenko, V.A. Murashov, D.N. Rakov, and I.B. Krynetskiy: Phys. Lett. A 158 (1991) 491.

Google Scholar

[20] W. Chen, A.J. Williams, L. Ortega-San-Martin, M. Li, D.C. Sinclair, W. Zhou, J. Paul Attfield and Chem. Mater. 21 (2009) 2085-(2093).

Google Scholar

[21] V. Fruth, L. Mitoseriu, D. Berger, A. Ianculescu, C. Matei, S. Preda, and M. Zaharescu: Prog. Solid State Chem. 35 (2007) 193-202.

DOI: 10.1016/j.progsolidstchem.2007.01.019

Google Scholar

[22] A. Buerger: Powder Method in X-ray Crystallograhphy, (1958).

Google Scholar