Heteropolytypic Superlattices

Article Preview

Abstract:

Based on a Kronig-Penney model the electronic properties of heteropolytypic superlattices consisting of lamellas of 3C-and 4H-SiC polytypes with thicknesses below ten nanometers are analysed. Due to the large difference in the electron negativity and the resulting high barriers between the different polytypic lamellas an increased number of minizones compared to other materials are formed. The field strength for the appearance of the negative differential resistance in the heteropolytypic superlattice is lower than the critical fields in the silicon carbide polytypes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

278-282

Citation:

Online since:

May 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.B. Dubrovskii, Sov. Phys. Solid State 13 (1972) 2107.

Google Scholar

[2] F. Bechstedt P. Käckell, Phys. Rev. Lett. 75 (1995) 2180-2183.

Google Scholar

[3] W.J. Choyke, D.R. Hamilton, L. Patrick, Phys. Rev. 133 (1964) A1163-A1166.

Google Scholar

[4] H. Jagozinski, Acta Cryst. 2 (1949) 201-207.

Google Scholar

[5] S. Yu. Davydov, Semiconductors 41 (2007) 696-698.

Google Scholar

[6] A.A. Kalnin, V.V. Lutschinin, F. Neubert, Yu.M. Tairov, Sov. Phys. Tech. Phys. 29 (1984) 807-809.

Google Scholar

[7] A.A. Kalnin, F. Neubert, J. Pezoldt, Diamond Related Mater. 3, (1994) 346-352.

Google Scholar

[8] A. Fissel, Phys. Rep. 379 (2003) 149-255.

Google Scholar

[9] J. Pezoldt, D.R. Moskwina, Sov. Tech. Phys. Lett. 18 (1992) 432-433.

Google Scholar

[10] J. Pezoldt, A.A. Kalnin, W.D. Savelyev; Nucl. Instr. Meth. Phys. Res. B 65 (1992) 361-365.

Google Scholar

[11] A.A. Kalnin, J. Pezoldt, Yu.M. Tairov, Sov. Phys. Solid State 29 (1987) 328-329.

Google Scholar

[12] J. Lu, C.I. Thomas, M.V.S. Chandrashekar, M.G. Spencer, J. Appl. Phys. 105 (2009) 106108.

Google Scholar

[13] J. Pezoldt, A.A. Kalnin, W.D. Savelyev, Nucl. Instr. Meth. Phys. Res. B 65 (1992) 361-365.

Google Scholar

[14] M.S. Miao, S. Limpijumnong, W.R.L. Lambrecht, Appl. Phys, Lett. 79 (2001) 4360-4362.

Google Scholar

[15] S. Bai, R.P. Devaty, W.J. Choyke, U. Kaiser, G. Wagner, M.F. MacMillan, Appl. Phys. Lett. 83 (2003) 3171-3173.

Google Scholar

[16] V.M. Polyakov, F. Schwierz, J. Appl. Phys. 98 (2005) 023709.

Google Scholar

[17] S.Y. Davydov, Semiconductors 41 (2007) 618-620.

Google Scholar

[18] E.V. Ageeva, F. Noibert, B. Schtottko, Isw. LETI 338 (1984) 26-29.

Google Scholar

[19] A. Sasaki, Phys. Rev. B 30 (1984) 7016-7020.

Google Scholar

[20] E.S. Borowitskaya, V.M. Genkin, Sol. St. Com. 46 (1983) 769-771.

Google Scholar

[21] V. I Sankin, I.A. Stolichnov, Semiconductors 31 (1997) 489-495.

Google Scholar