Influence of Content and Treatment of Clay in the Morphology of PES Membranes

Article Preview

Abstract:

Polymeric membranes were produced from the nanocomposites of polyethersulfone and clay (untreated-MMT and treatment-OMMT), by phase inversion technique, in the proportions of 3 and 5% w/w, using as the solvent N, N dimethylformamide (DMF). From XRD results it was noted a change in the structure of the MMT by organophilization process with increase of the interplanar basal distance. To the membranes it was observed an exfoliated and/or partially exfoliated structure. From SEM images the nanocomposite membranes showed a surface apparently exempt of pores, however in the cross-section images shows an anisotropic structure, where the skin is dense and the porous support displays macrovoids. By the flow measurement, it was found that the compositions presented the same tendency in the flow lines, where the flow is high on the beginning and drops over time; and the inclusion of clay increases the flow, especially to the membranes with MMT 5%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

824-829

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. L Ahmad; A.A. Abdulkarim; B.S. Oi; S. Ismail: Chem. Eng. J. Vol. 223 (2013), p.2467.

Google Scholar

[2] L.J. Zhu; L.P. Zhu, J.H. Jiang, Z. Yi, Y.F. Zhao, B.K. Zhu, Y.Y. Xu: J. Membr. Sci. Vol. 451 (2014), p.157.

Google Scholar

[3] L. Yan , Y.S. Li, C.B. Xiang, S. Xianda: J. Membr. Sci. Vol. 276 (2006), p.162.

Google Scholar

[4] S. Balta, A. Sotto, P. Luis, L. Benea, B. Van der Bruggen, J. Kim: J. Membr. Sci. Vol. 389 (2012), p.155.

Google Scholar

[5] R.X. Zhang, L. Braeken, P. Luis, X.L. Wang, B. Van der Bruggen: J. Membr. Sci Vol. 437 (2013), p.179.

Google Scholar

[6] Y. Mansourpanah; S.S. Madaeni, A. Rahimpour, M. Adeli, M.Y. Hashemi, M.R. Moradian: Desalination Vol. 277 (2011), p.171.

DOI: 10.1016/j.desal.2011.04.022

Google Scholar

[7] M. Hu, B. Mi: Environ. Sci. Technol. Vol. 47(8) (2013), p.3715.

Google Scholar

[8] R. Barbosa; L.F. Maia, O.D. Pereira, E.M. Araújo, T.J.A. Melo, E. Ito: Polímeros: Ciência e Tecnologia Vol. 16 (2006), p.246.

Google Scholar

[9] V.F.R. Díaz, Preparação a nível de laboratório de algumas argilas esmectiticas organofílicas. Doutorado (Tese). São Paulo, 1994. Universidade de São Paulo (USP/POLI). (SP).

DOI: 10.29381/0103-8559/20203004513-20

Google Scholar

[10] A.C. Habert, C P. Borges, R. Nobrega: Processo de Separação com Membranas. (1ª ed. Rio de Janeiro. E-papers Serviços Editoriais Ltda. 2006).

Google Scholar

[11] H.S. Ferreira, L.F.A. Campos, R.R. Menezes, J.M. Cartaxo, L.N.L. Santana, G.A. Neves: Cerâmica Vol. 59 (2013), p.350.

Google Scholar

[12] C.Y. Liang, P. Uchytil, R. Petrychkovych, Y.C. Lai, K. Friess, M. Sipek, M.M. Reddy, S.Y. Suen: Sep. Purif. Technol. Vol. 92 (2012), p.57.

DOI: 10.1016/j.seppur.2012.03.016

Google Scholar

[13] N. Ghaemi, S.S. Madaeni, A. Alizadeh, H. Rajabi, P. Daraei: Journal of Membrane Science Vol. 382 (2011), p.135.

Google Scholar

[14] Y. Wang, B. Zhang, J. Ye: Mater. Sci. Eng. A Vol. 528 (2011), p.7999.

Google Scholar

[15] F. Ran, J. Li, Y. Lu, L. Wang, S. Nie, H. Song, L. Zhao, S. Sun, C. Zhao: Mater. Sci. Eng. A Vol. 37 (2014), p.68.

Google Scholar

[16] S. Saedi S.S. Madaeni, F. Seidi, A.A. Shamsabadi, S. Laki: Chem. Eng. J. Vol. 236 (2014), p.263.

Google Scholar

[17] J.C. Mierzwa, V. Arieta, M. Verlage, J. Carvalho, C.D. Vecitis: Desalination Vol. 314 (2013), p.147.

DOI: 10.1016/j.desal.2013.01.011

Google Scholar

[18] M. Liu, Y.M. Wei, Z.L. Xu, R.Q. Guo, L.B. Zhao, Preparation and characterization of polyethersulfone microporous membrane via thermally induced phase separation with low critical solution temperature system; J. Membr. Sci 437 (2013) 169–178.

DOI: 10.1016/j.memsci.2013.03.004

Google Scholar