Mechanical Analysis of Biodegradable Films from Native and Chemically Modified Potato Starches

Article Preview

Abstract:

The production of biodegradable films has been studied to be a substitute of conventional plastics. The use of starch in biodegradable films are of great interest and starch modification improves an increase to the mechanical properties the film. The mechanical properties were evaluated by Dynamic Mechanical Analysis (DMA). The aim of this study is to determine the mechanical properties of biodegradable films produced from native and chemically modified potato starch. The starch was extracted and subjected to chemical modification by oxidation in different concentrations of active chlorine. The biodegradable films were prepared with starch and glycerol as plasticizer, and were observed with an optical microscope to evaluate the morphology and their relationship with the strength. The tensile tests were performed at 80oC to evaluate the mechanical properties by means of stress-strain curves. The morphology of biodegradable potato starch films shows that the starch granules were partially gelatinized during the film formation. As the elastic modulus is a property which determines the stiffness of the material, by means of he DMA analysis it can be seen that oxidation results in beneficial changes in the mechanical properties of the films, because the modulus increased from 346.70 MPa for the native starch to 651.75 MPa to oxidized starch with 1.5% of active chlorine, respectively.

You might also be interested in these eBooks

Info:

[1] A.B. Dias, C.M.O. Müller, F.D.S. Larotonda, and J.B. Laurindo: J. Cereal Sci. Vol 51 (2010), p.213.

Google Scholar

[2] G.M. Souza: Desenvolvimento de filmes biodegradáveis ativos e aplicação na conservação de massa alimentícia fresca. Mestrado (Dissertação). Goiânia, 2012. Universidade Federal de Goiás (UFG) (GO).

DOI: 10.5212/terraplural.v.15.2115201.021

Google Scholar

[3] S. Tajik, Y. Maghsoudlou, F. Khodaiyan, S.M. Jafari, M. Ghasemlou, M. Aalami: Carbohydr. Polym. Vol. 97 (2013), p.817.

DOI: 10.1016/j.carbpol.2013.05.037

Google Scholar

[4] J.P. Maran, V. Sivakumar, R. Sridhar, V.P. Immanuel: Ind. Crop. Prod. Vol. 42 (2013), p.159.

Google Scholar

[5] M.A. Shirai, M.V.E. Grossmann, S. Mali, F. Yamashita, P.S. Garcia, C.M.O. Müller: Carbohydr. Polym. Vol. 92 (2013), p.19.

Google Scholar

[6] J. Dieulot, O. Skurtys: J. Food Eng. Vol. 119 (2013), p.188.

Google Scholar

[7] C.C. Denardin, L.P. Silva: Estrutura dos grânulos de amido e sua relação com propriedades físico-químicas, Ciência Rural (2006), p.1.

DOI: 10.1590/s0103-84782009005000003

Google Scholar

[8] A. Taghizadeh, B.D. Favis: Carbohydr. Polym. Vol. 92 (2013), p.1799.

Google Scholar

[9] F. Xie, B. M. Flanagan, M. Li, P. Sangwan, R. W. Truss, P. J. Halley, E. V Strounina, A. K. Whittaker, M. J. Gidley, K.M. Dean, J.L. Shamshina, R.D. Rogers, T. Mcnally: Carbohydr. Polym. Vol. 111 (2014), p.841.

DOI: 10.1016/j.carbpol.2014.05.058

Google Scholar

[10] H.J. Bae, D.S. Cha, W.S. Whiteside, H.J. Park: Food Chemistry Vol. 106 (2008), p.96.

Google Scholar

[11] A.B. Dias: Desenvolvimento e caracterização de filmes biodegradáveis obtidos de amido e de farinha de arroz. Mestrado (Dissertação). Florianópolis, 2008. Universidade Federal de Santa Catarina (UFSC). (SC).

DOI: 10.5196/physicae.v11i11.311

Google Scholar

[12] M.A. Shirai, A. Haas, G.F. Ferreira, L.S. Matsuguma, C.M.L. Franco, I.M. Demiate: Ciência e Tecnologia de Alimentos Vol. 27 (2007), p.239.

DOI: 10.1590/s0101-20612007000200005

Google Scholar

[13] A. Cano, A. Jiménez, M. Cháfer, C. Gónzalez, A. Chiralt: Carbohydr. Polym. Vol. 111 (2014), p.543.

Google Scholar

[14] W. Ban, J. Song, D.S. Argyropoulos, L.A. Lucia: Ind. Eng. Chem. (2006), p.627.

Google Scholar

[15] R. Pareta, M.J. Edirisinghe: Carbohydrate Polymers Vol. 63 (2006), p.425.

Google Scholar

[16] S.S. Paes, I. Yakimets, N. Wellner, S.E. Hill, R.H. Wilson, J.R. Mitchell: European Polymer Journal Vol. 46 (2010), p.2300.

Google Scholar

[17] H. Blom, R. Yeh, R. Wojnarowski, M. Ling: Thermochimica Acta Vol. 442 (2006), p.64.

Google Scholar

[18] J. Blahovec, M. Lahodová: Food Chemistry Vol. 133 (2012), p.1101.

Google Scholar

[19] A.B. Bashaiwoldu, F. Podczeck, J.M. Newton: International Journal of Pharmaceutics Vol. 269 (2204), p.329.

Google Scholar

[20] S. Deng, M. Hou, L. Ye: Polymer Testing Vol. 26 (2007), p.803.

Google Scholar

[21] H. Ma, L. Tong, Z. Xu, Z. Fang, Y. Jin, F. Lu: Polymer Degradation and Stability Vol. 92 (2007), p.720.

Google Scholar

[22] Q. Shao, P. Lee-Sullivan: Guidelines for performing storage modulus measurements using the TA Instruments DMA 2980 three-point bend modeII, vol. 19, Polymer Testing, (2000) 155–164.

DOI: 10.1016/s0142-9418(98)00083-x

Google Scholar

[23] A.R.G. Dias, E.R. Zavareze, M.C. Elias, E. Helbig, D.O. Silva, C.F. Ciacco: Carbohydr. Polym. Vol. 84 (2011), p.268.

Google Scholar

[24] R.D.P. Mota: Elaboração e caracterização de filmes biodegradaveis através de blenda polimérica de amido de lírio-do-brejo (hedychium coronarium) e de amido de fruto-do-lobo (Solanum lycocarpum St . Hil). Mestrado (Dissertação). Anápolis, 2009. Universidade Federal de Goiás (UFG) (GO).

DOI: 10.19142/rpq.v3i5.86

Google Scholar

[25] A.P. Santos: Extração e caracterização do amido do fruto-do- lobo (Solanum lycocarpum St . Hil) e elaboração de filmes biodegradáveis. Mestrado (Dissertação). Anápolis, 2009. Universidade Federal de Goiás (UFG) (GO).

DOI: 10.19142/rpq.v3i5.86

Google Scholar

[26] W.S. Moura: Extração e caracterização do amido do hedychium coronarium e elaboração de filmes biodegradáveis. Mestrado (Dissertação). Anápolis, 2008. Universidade Federal de Goiás (UFG) (GO).

DOI: 10.19142/rpq.v3i5.86

Google Scholar

[27] E.R. Zavareze: Extração e tratamentos hidrotérmicos de amido de arroz. Mestrado (Dissertação). Pelotas, 2009. Universidade Federal de Pelotas (UFPel). (RS).

DOI: 10.46311/2318-0579.59.euj3736

Google Scholar