Effects of Alloying Element Cr on Ni-Mn-Ga Alloys Studied by Ab Initio Calculations

Article Preview

Abstract:

The effects of Cr addition on the crystal structure, phase stability and magnetic properties of Ni8Mn4-xGa4Crx (x=0, 1 and 2) ferromagnetic shape memory alloys are systematically investigated by ab-initio calculations. The formation energy results indicate that the added Cr preferentially occupies the Mn sites in Ni2MnGa alloy due to the lowest formation energy. The evaluated Curie temperature decreases with increasing Cr content are derived from the decrease of the total energy difference between the paramagnetic and the ferromagnetic austenite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-17

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Ullakko, J. K. Huang, C. Kantner, R. C. O'Handley, V. V. Kokorin, Large magnetic-field-induced strains in Ni2MnGa single crystals, Appl. Phys. Lett. 69 (1996) 1966-(1968).

DOI: 10.1063/1.117637

Google Scholar

[2] J. Pons, V. A. Chernenko, R. Santamarta, E. Cesari, Crystal structure of martensitic phases in Ni-Mn-Ga shape memory alloys, Acta Mater. 48 (2000) 3027-3038.

DOI: 10.1016/s1359-6454(00)00130-0

Google Scholar

[3] A. Sozinov, A. A. Likhachev, N. Lanska, K. Ullakko, Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase, Appl. Phys. Lett. 80 (2002) 1746-1748.

DOI: 10.1063/1.1458075

Google Scholar

[4] T. Kakeshita, K. Ullakko, Giant magnetostriction in ferromagnetic shape-memory alloys, MRS Bull. 27 (2002) 105-109.

DOI: 10.1557/mrs2002.45

Google Scholar

[5] S. H. Guo, Y. H. Zhang, Z. Q. Zhao, Y. Qi, B.Y. Quan, X. L. Wang, Effects of Sm on phase transformation in Ni-Mn-Ga alloys, J. Rare Earth 22 (2004) 875-877.

Google Scholar

[6] K. Tsuchiya, A. Tsutsumi, H. Ohtsuka, M. Umemoto, Modification of Ni-Mn-Ga ferromagnetic shape memory alloy by addition of rare earth elements, Mater. Sci. Eng. A 378 (2004) 370-376.

DOI: 10.1016/j.msea.2003.11.076

Google Scholar

[7] H. B. Wang, F. Chen, Z. Y. Gao, W. Cai , L.C. Zhao, Effect of Fe content on fracture behavior of Ni-Mn-Fe-Ga ferromagnetic shape memory alloys, Mater. Sci. Eng. A 438-440 (2006) 990-993.

DOI: 10.1016/j.msea.2006.01.101

Google Scholar

[8] S. Y. Yang, Y. Liu, C. P. Wang, Z. Shi, X. J. Liu, The mechanism clarification of Ni-Mn-Fe-Ga alloys with excellent and stable functional properties, J. Alloy. Compd. 560 (2013) 84-91.

DOI: 10.1016/j.jallcom.2013.01.128

Google Scholar

[9] D. Y. Cong, S. Wang, Y. D. Wang, Y. Ren, L. Zuo, C. Esling, Martensitic and magnetic transformation in Ni-Mn-Ga-Co ferromagnetic shape memory alloys, Mater. Sci. Eng. A 473 (2008) 213-218.

DOI: 10.1016/j.msea.2007.03.088

Google Scholar

[10] J. Bai, J. M. Raulot, Y. D. Zhang, C. Esling, X. Zhao, L. Zuo, The effects of alloying element Co on Ni-Mn-Ga ferromagnetic shape memory alloys from first-principles calculations, Appl. Phys. Lett. 98 (2011) 164103.

DOI: 10.1063/1.3582239

Google Scholar

[11] G. F. Dong, W. Cai, Z. Y. Gao, J. H. Sui, Effect of isothermal ageing on microstructure, martensitic transformation and mechanical properties of Ni53Mn23. 5Ga18. 5Ti5 ferromagnetic shape memory alloy, Scripta Mater. 58 (2008) 647-650.

DOI: 10.1016/j.scriptamat.2007.11.034

Google Scholar

[12] Z. Y. Gao, G. F. Dong, W. Cai, J. H. Sui, Y. Feng, X. H. Li, Martensitic transformation and mechanical properties in an aged Ni-Mn-Ga-Ti ferromagnetic shape memory alloy, J. Alloy. Compd. 481 (2009) 44-47.

DOI: 10.1016/j.jallcom.2009.03.105

Google Scholar

[13] Y. Q. Ma, S. L. Lai, S. Y. Yang, Y. Luo, C. P. Wang, X. J. Liu, Ni56Mn25-xCrxGa19 (x=0, 2, 4, 6) high temperature shape memory alloys, Trans. Nonferrous Met. Soc. China 21 (2011) 96-101.

DOI: 10.1016/s1003-6326(11)60683-3

Google Scholar

[14] J. Hafner, Atomic-scale computational materials science, Acta Mater. 48 (2000) 71-92.

Google Scholar

[15] G. Kresse, D. Joubert, from ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999)1758-1775.

DOI: 10.1103/physrevb.59.1758

Google Scholar

[16] J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45 (1992) 13244-13249.

DOI: 10.1103/physrevb.45.13244

Google Scholar

[17] H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[18] J. Bai, J. M. Raulot, Y. D. Zhang, C. Esling, X. Zhao, and L. Zuo, Defect formation energy and magnetic structure of shape memory alloys Ni-X-Ga (X=Mn, Fe, Co) by first principle calculation, J. Appl. Phys. 108 (2010) 064904.

DOI: 10.1063/1.3463391

Google Scholar

[19] P. J. Brown, J. Crangle, T. Kanomata, M. Matsumoto, K. -U. Neumann, B. Ouladdiaf, K. R. A. Ziebeck, The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa, J. Phys.: Condens. Matter 14 (2002)10159 -10171.

DOI: 10.1088/0953-8984/14/43/313

Google Scholar

[20] D. Y. Cong, P. Zetterström, Y. D. Wang, R. Delaplane, R. L. Peng, X. Zhao, and L. Zuo, Crystal structure and phase transformation in Ni53Mn25Ga22 shape memory alloy from 20 K to 473 K, Appl. Phys. Lett. 87 (2005)111906.

DOI: 10.1063/1.2043250

Google Scholar

[21] A. Chakrabarti, C. Biswas, S. Banik, R. S. Dhaka, A. K. Shukla, S. R. Barman, Influence of Ni doping on the electronic structure of Ni2MnGa, Phys. Rev. B 72 (2005) 073103.

Google Scholar