Crystal Structure, Phase Stability and Magnetic Properties of Cu-Doped Ni2MnGa Alloys from First-Principles Calculations

Article Preview

Abstract:

The effects of Cu addition on the crystal structure, phase stability and magnetic properties of Ni8Mn4-xGa4Cux (x=0, 0.5, 1, 1.5 and 2) ferromagnetic shape memory alloys are systematically investigated by first-principles calculations. The formation energy results indicate that the added Cu preferentially occupies the Mn sites in Ni2MnGa alloy. The formation energy results indicate that ferromagnetic austenite is more stable than the paramagnetic one. The ferromagnetic state becomes instable and paramagnetic state becomes more stable when Mn is gradual substituted by Cu. Furthermore, the electronic density of states gives rise to the difference in the magnetic properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-7

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Sozinov, A. A. Likhachev, N. Lanska, K. Ullakko, Crystal structures and magnetic anisotropy properties of Ni-Mn-Ga martensitic phases with giant magnetic-field-induced strain, Appl. Phys. Lett. 80 (2002) 1746-1748.

DOI: 10.1109/intmag.2002.1000720

Google Scholar

[2] T. Kakeshita, K. Ullakko, MRS Bull. Giant magnetostriction in ferromagnetic shape-memory alloys 27(2002) 105-109.

DOI: 10.1557/mrs2002.45

Google Scholar

[3] L. Gao, W. Cai, A. L. Liu, L. C. Zhao, Preparation and characterization of Ni-Mn-Ga high temperature shape memory alloy thin films using rf magnetron sputtering method, J. Alloy. Compd. 425 (2006) 314-317.

DOI: 10.1016/j.msea.2006.01.115

Google Scholar

[4] S. H. Guo, Y. H. Zhang, Z. Q. Zhao, Y. Qi, B. Y. Quan and X. L. Wang, Effects of Sm on phase transformation in Ni-Mn-Ga alloys, J. Rare Earth 22 (2004) 875-877.

Google Scholar

[5] K. Tsuchiya, A. Tsutsumi, H. Ohtsuka, M. Umemoto, Modification of Ni-Mn-Ga ferromagnetic shape memory alloy by addition of rare earth elements, Mater. Sci. Eng. A 378 (2004) 370-376.

DOI: 10.1016/j.msea.2003.11.076

Google Scholar

[6] H. B. Wang, F. Chen, Z. Y. Gao, W. Cai, L. C. Zhao, Effect of Fe content on fracture behavior of Ni-Mn-Fe-Ga ferromagnetic shape memory alloys, Mater. Sci. Eng. A 438-440 (2006) 990-993.

DOI: 10.1016/j.msea.2006.01.101

Google Scholar

[7] S. Y. Yang, Y. Liu, C. P. Wang, Z. Shi, X. J. Liu, The mechanism clarification of Ni-Mn-Fe-Ga alloys with excellent and stable functional properties, J. Alloy. Compd. 560 (2013) 84-91.

DOI: 10.1016/j.jallcom.2013.01.128

Google Scholar

[8] D. Y. Cong, S. Wang, Y. D. Wang, Y. Ren, L. Zuo, C. Esling, Martensitic and magnetic transformation in Ni-Mn-Ga-Co ferromagnetic shape memory alloys, Mater. Sci. Eng. A 473 (2008) 213-218.

DOI: 10.1016/j.msea.2007.03.088

Google Scholar

[9] Y. Y. Li, J. M. Wang, C. B. Jiang, Study of Ni–Mn–Ga–Cu as single-phase wide-hysteresis shape memory alloys, Mater. Sci. Eng. A 528, 6907-6911 (2011).

DOI: 10.1016/j.msea.2011.05.060

Google Scholar

[10] S. Stadler, M. Khan, J. Mitchell, N. Ali, A. M. Gomes, I. Dubenko, A.Y. Takeuchi, A.P. Guimarães, Magnetocaloric properties of Ni2Mn1-xCuxGa, Appl. Phys. Lett. 88 (2006) 192511.

DOI: 10.1063/1.2202751

Google Scholar

[11] I. Glavatskyy, N. Glavatska, A. Dobrinsky, J. -U. Hoffmann, O. Söderberg, S. -P. Hannula, Crystal structure and high-temperature magnetoplasticity in the new Ni-Mn-Ga-Cu alloys, Scripta Mater. 56 (2007) 565-568.

DOI: 10.1016/j.scriptamat.2006.12.019

Google Scholar

[12] C. B. Jiang, J. M. Wang, P. P. Li, A. Jia, H. B. Xu, Search for transformation from paramagnetic martensite to ferromagnetic austenite: NiMnGaCu alloys, Appl. Phys. Lett. 95, 012501 (2009).

DOI: 10.1063/1.3155199

Google Scholar

[13] S. Roy, E. Blackburn, S. M. Valvidares, M. R. Fitzsimmons, S. C. Vogel, M. Khan, I. Dubenko, S. Stadler, N. Ali, S. K. Sinha, J. B. Kortright, Delocalization and hybridization enhance the magnetocaloric effect in Cu-doped Ni2MnGa, Phys. Rev. B 79 (2009).

DOI: 10.1103/physrevb.79.235127

Google Scholar

[14] G. J. Li, E. K. Liu, H. G. Zhang, Y. J. Zhang, G. Z. Xu, H. Z. Luo, H. W. Zhang, W. H. Wang, G. H. Wu, Role of covalent hybridization in the martensitic structure and magnetic properties of shape-memory alloys: The case of Ni50Mn5+xGa35-xCu10, Appl. Phys. Lett. 102 (2013).

DOI: 10.1063/1.4791701

Google Scholar

[15] M. Zelený, A. Sozinov, L. Straka, T. Björkman, R. M. Nieminen, First-principles study of Co- and Cu-doped Ni2MnGa along the tetragonal deformation path, Phys. Rev. B 89 (2014) 184103.

DOI: 10.1103/physrevb.89.184103

Google Scholar

[16] J. Hafner, Atomic-scale computational materials science, Acta Mater. 48 (2000) 71-92.

Google Scholar

[17] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[18] G. Kresse, J. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999) 1758-1775.

DOI: 10.1103/physrevb.59.1758

Google Scholar

[19] J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45 (1992) 13244-13249.

DOI: 10.1103/physrevb.45.13244

Google Scholar

[20] H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[21] J. Bai, J. M. Raulot, Y. D. Zhang, C. Esling, X. Zhao, L. Zuo, Crystallographic, magnetic, and electronic structures of ferromagnetic shape memory alloys Ni2XGa (X=Mn, Fe, Co) from first-principles calculations, J. Appl. Phys. 109 (2011) 014908.

DOI: 10.1063/1.3524488

Google Scholar