Defect Stability and Electronic Configuration of Off-Stoichiometric Ni-X-In (X = Mn, Fe and Co) Alloys: A First-Principles Study

Article Preview

Abstract:

Ni-Mn-In is a novel type of magnetic shape memory alloy, its shape memory effect has been realized through magnetic field induced reverse martensitic transformation. A variety of point defects would be generated during composition adjustment process, such as antisite defect, vacancy and exchange. The first–principles calculations within the framework of the density functional theory using the Vienna ab initio software package (VASP) have been used in this paper to investigate the defect formation energy and electronic configuration of the off-stoichiometric Ni-X-In (X= Mn, Fe and Co) alloys. The In antisite on the X sublattice (InX) and the Ni antisite on the X sublattice (NiX) have the lowest formation energies in the investigated series. The formation energy of the Ni vacancy is the lowest, while that of the in vacancy is the highest. It is confirmed that the in constituent plays a dominant role for stabilizing the austenitic phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

8-12

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto,O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida, Magnetic-field-induced shape recovery by reverse phase transformation Nature, 439 (2006) 957-960.

DOI: 10.1038/nature04493

Google Scholar

[2] T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, A. Planes, Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In alloys, Phys. Rev. B 73 (2006) 174413.

DOI: 10.1103/physrevb.73.174413

Google Scholar

[3] W. Cai, Y. Feng, J. H. Sui, Z. Y. Gao, G. F. Dong, Microstructure and martensitic transformation behavior of the Ni50Mn36In14 melt-spun ribbons, Scripta Mater. 58 (2008) 830-833.

DOI: 10.1016/j.scriptamat.2007.12.035

Google Scholar

[4] A. T. Zayak, W. A. Adeagbo, P. Entel, K. M. Rabe, e/a dependence of the lattice instability of cubic Heusler alloys from first principles, Appl. Phys. Lett. 88 (2006) 111903.

DOI: 10.1063/1.2185046

Google Scholar

[5] P. Entel, M. E. Gruner, W.A. Adeagbo, A.T. Zayak, Magnetic-field-induced changes in magnetic shape memory alloys, Mat. Sci. Eng. A, 481-482 (2008) 258-261.

DOI: 10.1016/j.msea.2007.01.191

Google Scholar

[6] J. Bai, N. Xu, J. M. Raulot, Y. D. Zhang, C. Esling, X. Zhao and L. Zuo, First-principles investigations of crystallographic, magnetic, and electronic structures in Ni2XIn (X=Mn, Fe, and Co), J. Appl. Phys. 112 (2012) 114901.

DOI: 10.1063/1.4767331

Google Scholar

[7] J. Hafner, Atomic-scale computational materials science, Acta Mater. 48 (2000) 71-92.

Google Scholar

[8] D. Vanderbilt, Soft self-consistent pseudopotentials in generalized eigenvalue formalism, Phys. Rev. B 41 (1990) 7892-7895.

DOI: 10.1103/physrevb.41.7892

Google Scholar

[9] J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45 (1992) 13244-13249.

DOI: 10.1103/physrevb.45.13244

Google Scholar

[10] H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar