Large Scale Synthesis of Porous Carbon-Nitride Microsphere for Visible Light Harvesting

Article Preview

Abstract:

Porous carbon nitride microsphere with dimaters ranging from 2 to 6 micrometers were synthesized via chemical vapor deposition in this work. Electron microscope images of the composite show that they have multiwalled innerstructure, which was built by disorderly stacked g-C3N4 curved layers assembled from nitrogen bridges of pyramidal structure, making them porous surfaced. Their mechanical and optical properties were studied with nanoindenter and UV-VIS spectra. It shows that they have good mechanical properties and, compared to carbon nitride synthesized by solvent method, out carbon nitride composite showed relativly broader light absorption band between 400 nm and 600 nm. Also, its visible light degradation of methyl blue was studied, showing its potential as visible light photocatalytic for water purification.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

64-69

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Y. Liu, M. L. Cohen, Prediction of New Low Compressibility Solids, Science 245 (1989) 841-842.

DOI: 10.1126/science.245.4920.841

Google Scholar

[2] R. Reyes, C. Legnani, P. M. Ribeiro Pinto, M. Cremona, P. J. G. De Araújo, C. A. Achete, Room-temperature low-voltage electroluminescence in amorphous carbon nitride thin films, Appl. Phys. Lett. 82 (2003) 4017-4019.

DOI: 10.1063/1.1581000

Google Scholar

[3] E. G. Gillan, Synthesis of Nitrogen-Rich Carbon Nitride Networks from an Energetic Molecular Azide Precursor, Chem. Mat. 12 (2000) 3906-3912.

DOI: 10.1021/cm000570y

Google Scholar

[4] K. Maeda, X. C. Wang, Y. Nishihara, D. L. Lu, M. Antonietti, K. Domen, Photocatalytic Activities of Graphitic Carbon Nitride Powder for Water Reduction and Oxidation under Visible Light, J. Phys. Chem. C 113 (2009) 4940-4947.

DOI: 10.1021/jp809119m

Google Scholar

[5] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat Mater 8 (2009) 76-80.

DOI: 10.1038/nmat2317

Google Scholar

[6] Y. Zhao, Z. Liu, W. Chu, L. Song, Z. Zhang, D. Yu, Y. Tian, S. Xie, L. Sun, Large-Scale Synthesis of Nitrogen-Rich Carbon Nitride Microfibers by Using Graphitic Carbon Nitride as Precursor, Adv. Mater. 20 (2008) 1777-1781.

DOI: 10.1002/adma.200702230

Google Scholar

[7] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J. -O. Muller, R. Schlogl, J. M. Carlsson, Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts, J. Mater. Chem. 18 (2008) 4893-4908.

DOI: 10.1039/b800274f

Google Scholar

[8] Y. Cui, G. Zhang, Z. Lin, X. Wang, Condensed and low-defected graphitic carbon nitride with enhanced photocatalytic hydrogen evolution under visible light irradiation, Appl. Catal., B 181 (2016) 413-419.

DOI: 10.1016/j.apcatb.2015.08.018

Google Scholar

[9] X. -H. Li, M. Antonietti, Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: functional Mott-Schottky heterojunctions for catalysis, Chem. Soc. Rev. 42 (2013) 6593-6604.

DOI: 10.1039/c3cs60067j

Google Scholar

[10] X. Yuan, C. Zhou, Y. Jin, Q. Jing, Y. Yang, X. Shen, Q. Tang, Y. Mu, A. -K. Du, Facile synthesis of 3D porous thermally exfoliated g-C3N4 nanosheet with enhanced photocatalytic degradation of organic dye, J. Colloid Interface Sci. 468 (2016).

DOI: 10.1016/j.jcis.2016.01.048

Google Scholar

[11] B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller, W. Schnick, Melem (2, 5, 8-Triamino-tri-s-triazine), an Important Intermediate during Condensation of Melamine Rings to Graphitic Carbon Nitride:  Synthesis, Structure Determination by X-ray Powder Diffractometry, Solid-State NMR, and Theoretical Studies, J. Am. Chem. Soc. 125 (2003).

DOI: 10.1021/ja0357689

Google Scholar

[12] B. V. Lotsch, W. Schnick, New Light on an Old Story: Formation of Melam during Thermal Condensation of Melamine, Chem. -Eur. J. 13 (2007) 4956-4968.

DOI: 10.1002/chem.200601291

Google Scholar

[13] B. Mortazavi, G. Cuniberti, T. Rabczuk, Mechanical properties and thermal conductivity of graphitic carbon nitride: A molecular dynamics study, Comput. Mater. Sci. 99 (2015) 285-289.

DOI: 10.1016/j.commatsci.2014.12.036

Google Scholar

[14] N. Kaushik, P. Sharma, M. Nishijima, A. Makino, M. Esashi, S. Tanaka, Structural, mechanical and optical properties of thin films deposited from a graphitic carbon nitride target, Diam. Relat. Mater. 66 (2016) 149-156.

DOI: 10.1016/j.diamond.2016.04.007

Google Scholar

[15] F. E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting, Chem. Soc. Rev. 42 (2013) 2294-2320.

DOI: 10.1039/c2cs35266d

Google Scholar

[16] K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Photocatalyst releasing hydrogen from water, Nature 440 (2006) 295-295.

DOI: 10.1038/440295a

Google Scholar

[17] S. Stolbov, S. Zuluaga, Sulfur doping effects on the electronic and geometric structures of graphitic carbon nitride photocatalyst: insights from first principles, J. Phys. - Condens. Mat 25 (2013).

DOI: 10.1088/0953-8984/25/8/085507

Google Scholar

[18] W. Liu, M. Wang, C. Xu, S. Chen, X. Fu, Significantly enhanced visible-light photocatalytic activity of g-C3N4 via ZnO modification and the mechanism study, J. Mol. Catal. A- Chem. 368 (2013) 9-15.

DOI: 10.1016/j.molcata.2012.11.007

Google Scholar

[19] H. Lee, T. Ohno, Visible light photoreactivity from hybridization states between carbon nitride bandgap states and valence states in Nb and Ti oxides, Chemical Physics 415 (2013) 156-160.

DOI: 10.1016/j.chemphys.2013.01.006

Google Scholar

[20] S. -W. Cao, Y. -P. Yuan, J. Fang, M. M. Shahjamali, F. Y. C. Boey, J. Barber, S. C. J. Loo, C. Xue, In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation, International Journal of Hydrogen Energy 38 (2013).

DOI: 10.1016/j.ijhydene.2012.10.116

Google Scholar