[1]
A. Y. Liu, M. L. Cohen, Prediction of New Low Compressibility Solids, Science 245 (1989) 841-842.
DOI: 10.1126/science.245.4920.841
Google Scholar
[2]
R. Reyes, C. Legnani, P. M. Ribeiro Pinto, M. Cremona, P. J. G. De Araújo, C. A. Achete, Room-temperature low-voltage electroluminescence in amorphous carbon nitride thin films, Appl. Phys. Lett. 82 (2003) 4017-4019.
DOI: 10.1063/1.1581000
Google Scholar
[3]
E. G. Gillan, Synthesis of Nitrogen-Rich Carbon Nitride Networks from an Energetic Molecular Azide Precursor, Chem. Mat. 12 (2000) 3906-3912.
DOI: 10.1021/cm000570y
Google Scholar
[4]
K. Maeda, X. C. Wang, Y. Nishihara, D. L. Lu, M. Antonietti, K. Domen, Photocatalytic Activities of Graphitic Carbon Nitride Powder for Water Reduction and Oxidation under Visible Light, J. Phys. Chem. C 113 (2009) 4940-4947.
DOI: 10.1021/jp809119m
Google Scholar
[5]
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat Mater 8 (2009) 76-80.
DOI: 10.1038/nmat2317
Google Scholar
[6]
Y. Zhao, Z. Liu, W. Chu, L. Song, Z. Zhang, D. Yu, Y. Tian, S. Xie, L. Sun, Large-Scale Synthesis of Nitrogen-Rich Carbon Nitride Microfibers by Using Graphitic Carbon Nitride as Precursor, Adv. Mater. 20 (2008) 1777-1781.
DOI: 10.1002/adma.200702230
Google Scholar
[7]
A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J. -O. Muller, R. Schlogl, J. M. Carlsson, Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts, J. Mater. Chem. 18 (2008) 4893-4908.
DOI: 10.1039/b800274f
Google Scholar
[8]
Y. Cui, G. Zhang, Z. Lin, X. Wang, Condensed and low-defected graphitic carbon nitride with enhanced photocatalytic hydrogen evolution under visible light irradiation, Appl. Catal., B 181 (2016) 413-419.
DOI: 10.1016/j.apcatb.2015.08.018
Google Scholar
[9]
X. -H. Li, M. Antonietti, Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: functional Mott-Schottky heterojunctions for catalysis, Chem. Soc. Rev. 42 (2013) 6593-6604.
DOI: 10.1039/c3cs60067j
Google Scholar
[10]
X. Yuan, C. Zhou, Y. Jin, Q. Jing, Y. Yang, X. Shen, Q. Tang, Y. Mu, A. -K. Du, Facile synthesis of 3D porous thermally exfoliated g-C3N4 nanosheet with enhanced photocatalytic degradation of organic dye, J. Colloid Interface Sci. 468 (2016).
DOI: 10.1016/j.jcis.2016.01.048
Google Scholar
[11]
B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller, W. Schnick, Melem (2, 5, 8-Triamino-tri-s-triazine), an Important Intermediate during Condensation of Melamine Rings to Graphitic Carbon Nitride: Synthesis, Structure Determination by X-ray Powder Diffractometry, Solid-State NMR, and Theoretical Studies, J. Am. Chem. Soc. 125 (2003).
DOI: 10.1021/ja0357689
Google Scholar
[12]
B. V. Lotsch, W. Schnick, New Light on an Old Story: Formation of Melam during Thermal Condensation of Melamine, Chem. -Eur. J. 13 (2007) 4956-4968.
DOI: 10.1002/chem.200601291
Google Scholar
[13]
B. Mortazavi, G. Cuniberti, T. Rabczuk, Mechanical properties and thermal conductivity of graphitic carbon nitride: A molecular dynamics study, Comput. Mater. Sci. 99 (2015) 285-289.
DOI: 10.1016/j.commatsci.2014.12.036
Google Scholar
[14]
N. Kaushik, P. Sharma, M. Nishijima, A. Makino, M. Esashi, S. Tanaka, Structural, mechanical and optical properties of thin films deposited from a graphitic carbon nitride target, Diam. Relat. Mater. 66 (2016) 149-156.
DOI: 10.1016/j.diamond.2016.04.007
Google Scholar
[15]
F. E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting, Chem. Soc. Rev. 42 (2013) 2294-2320.
DOI: 10.1039/c2cs35266d
Google Scholar
[16]
K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Photocatalyst releasing hydrogen from water, Nature 440 (2006) 295-295.
DOI: 10.1038/440295a
Google Scholar
[17]
S. Stolbov, S. Zuluaga, Sulfur doping effects on the electronic and geometric structures of graphitic carbon nitride photocatalyst: insights from first principles, J. Phys. - Condens. Mat 25 (2013).
DOI: 10.1088/0953-8984/25/8/085507
Google Scholar
[18]
W. Liu, M. Wang, C. Xu, S. Chen, X. Fu, Significantly enhanced visible-light photocatalytic activity of g-C3N4 via ZnO modification and the mechanism study, J. Mol. Catal. A- Chem. 368 (2013) 9-15.
DOI: 10.1016/j.molcata.2012.11.007
Google Scholar
[19]
H. Lee, T. Ohno, Visible light photoreactivity from hybridization states between carbon nitride bandgap states and valence states in Nb and Ti oxides, Chemical Physics 415 (2013) 156-160.
DOI: 10.1016/j.chemphys.2013.01.006
Google Scholar
[20]
S. -W. Cao, Y. -P. Yuan, J. Fang, M. M. Shahjamali, F. Y. C. Boey, J. Barber, S. C. J. Loo, C. Xue, In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation, International Journal of Hydrogen Energy 38 (2013).
DOI: 10.1016/j.ijhydene.2012.10.116
Google Scholar