Hardness Homogeneity in an AZ80 Magnesium Alloy Processed by High-Pressure Torsion

Article Preview

Abstract:

Experiments were conducted on an AZ80 magnesium alloy by processing by high-pressure torsion (HPT) at room temperature (296 K) for up to 10 turns under an imposed pressure of 6.0 GPa. Measurements of the Vickers microhardness along diameters and through the disk thicknesses were recorded after HPT to evaluate the evolution towards homogeneity. The results show hardness increases up to a factor of approximately 2 and the deformation is more homogeneous along the disc diameter than through the thickness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

139-144

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.Z. Valiev, R.K. Islamgaliev, I. V Alexandrov, Prog. Mater. 45 (2000) 103.

Google Scholar

[2] T.G. Langdon, Acta Mater. 61 (2013) 7035.

Google Scholar

[3] R.Z. Valiev, T.G. Langdon, Prog. Mater. Sci. 51 (2006) 881.

Google Scholar

[4] A.P. Zhilyaev, T.G. Langdon, Prog. Mater. Sci. 53 (2008) 893.

Google Scholar

[5] A.P. Zhilyaev, G.V. Nurislamova, B. -K. Kim, M.D. Baró, J.A. Szpunar, T.G. Langdon, Acta Mater. 51 (2003) 753.

DOI: 10.1016/s1359-6454(02)00466-4

Google Scholar

[6] R.Z. Valiev, Y. V Ivanisenko, E.F. Rauch, B. Baudelet, Acta Mater. (1996) 4705.

Google Scholar

[7] J. Wongsa-Ngam, M. Kawasaki, T.G. Langdon, J. Mater. Sci. 47 (2012) 7782.

Google Scholar

[8] M. Kawasaki, J. Mater. Sci. 49 (2014) 18.

Google Scholar

[9] C. Xu, Z. Horita, T.G. Langdon, Acta Mater. 55 (2007) 203.

Google Scholar

[10] M. Kawasaki, B. Ahn, T.G. Langdon, Acta Mater. 58 (2010) 919.

Google Scholar

[11] N.X. Zhang, M. Kawasaki, Y. Huang, T.G. Langdon, J. Mater. Sci. 48 (2013) 4582.

Google Scholar

[12] K.U. Kainer, Magnesium – Alloys and Technology, Wiley, Germany, (2003).

Google Scholar

[13] M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Biomaterials 27 (2006) 1728.

Google Scholar

[14] R. Zeng, W. Dietzel, F. Witte, N. Hort, C. Blawert, Adv. Eng. Mater. 10 (2008) B3.

Google Scholar

[15] J. Kaneko, M. Sugamata, M. Numa, Y. Nishikawa, H. Takada, J. Japan Inst. Met. 64 (2000) 141.

Google Scholar

[16] P. Yang, L. Wang, Q. Xie, J. Li, H. Ding, L. Lu, Int. J. Miner. Metall. Mater. 18 (2011) 338.

Google Scholar

[17] R.B. Figueiredo, P.H.R. Pereira, M.T.P. Aguilar, P.R. Cetlin, T.G. Langdon, Acta Mater. 60 (2012) 3190.

Google Scholar

[18] A. Zhilyaev, S. Lee, G. V Nurislamova, R.Z. Valiev, T.G. Langdon, Scr. Mater. 44 (2001) 2753.

Google Scholar

[19] Y. Estrin, A. Molotnikov, C.H.J. Davies, R. Lapovok, J. Mech. Phys. Solids 56 (2008) 1186.

Google Scholar

[20] D.J. Lee, E.Y. Yoon, L.J. Park, H.S. Kim, Scr. Mater. 67 (2012) 384.

Google Scholar

[21] R.B. Figueiredo, G.C.V. de Faria, P.R. Cetlin, T.G. Langdon, J. Mater. Sci. 48 (2013) 4524.

Google Scholar