Damage Initiation in Dual-Phase Steels: Influence of Crystallographic and Morphological Parameters

Article Preview

Abstract:

Typical microstructures of dual-phase (DP) steels consist of hard martensite particles dispersed within a ductile ferritic matrix. These microstructures possess a complex network of grain and interphase boundaries, which, together with the mechanical contrast of their phase composition, control micro-damage initiation mechanisms, induced by deformation. Accordingly, in this study we analyze the influence of individual microstructural features and interfaces on damage nucleation and progression in DP steels with respect to applied tensile strain. Prominent micro-damage mechanisms include cracking of martensite and damage initiation at interphase boundaries. Influence of martensite morphology is discussed based on a statistical analysis of the damage features as observed by electron channeling contrast imaging (ECCI) and electron backscatter diffraction (EBSD) maps. Prior austenite grain boundaries (PAGbs) in martensite show a brittle behavior and are highly susceptible to crack propagation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-163

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

Ā© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Maire, O. Bouaziz, M. Di Michail, C. Verdu, Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography, Acta Mater 56 (2008) 4954–4964.

DOI: 10.1016/j.actamat.2008.06.015

Google Scholar

[2] C. C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, D. Raabe, An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design, Annu. Rev. Mater. Res. 45 (2015).

DOI: 10.1146/annurev-matsci-070214-021103

Google Scholar

[3] M. Erdogan, S. Tekeli, The effect of martensite particle size on tensile fracture of surface-carburised AISI 8620 steel with dual phase core microstructure, Mater. Des 23 (2002) 597-604.

DOI: 10.1016/s0261-3069(02)00065-1

Google Scholar

[4] M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging, Acta Mater 59 (2011) 658-670.

DOI: 10.1016/j.actamat.2010.10.002

Google Scholar

[5] Alaie, S. Ziaei Rad, J. Kadkhodapour, M. Jafari, M. Asadi Asadabad, S. Schmauder, Mater. Sci. Eng. A 638 (2015) 251-261.

DOI: 10.1016/j.msea.2015.04.071

Google Scholar

[6] D. Das, P. P. Chattopadhyay, Influence of martensite morphology on the work-hardening behavior of high strength ferrite-martensite dual-phase steel, J Mater Sci 44 (2009) 2957-2965.

DOI: 10.1007/s10853-009-3392-0

Google Scholar

[7] M. Mazinani, W. J. Poole, Effect of martensite plasticity on the deformation behavior of a low-carbon dual-phase steel, Metall. Mater. Trans. A 38 (2007) 328-339.

DOI: 10.1007/s11661-006-9023-3

Google Scholar

[8] G. Avramovic-Cingara, Y. Ososkov, M. K. Jain, D. S. Wilkinson, Effect of martensite distribution on damage behaviour in DP600 dual phase steels, Mater. Sci. Eng. A 516 (2009) 7-16.

DOI: 10.1016/j.msea.2009.03.055

Google Scholar

[9] S. Zaefferer, N-N. Elhami, Theory and application of electron channeling contrast imaging under controlled diffraction conditions, Acta Mater 75 (2014) 20-50.

DOI: 10.1016/j.actamat.2014.04.018

Google Scholar

[10] C. Cayron, ARPGE: a computer program to automatically reconstruct the parent grains from electron backscatter diffraction data, J. Appl. Cryst. 40 (2007) 1183-1188.

DOI: 10.1107/s0021889807048777

Google Scholar

[11] Azuma, S. Goutianos, N. Hansen, G. Winther, X. Huang, Effect of hardness of martensite and ferrite on void formation in dual phase steel, Mater Sci Technol 28 (2012) 1092-1100.

DOI: 10.1179/1743284712y.0000000006

Google Scholar

[12] T. Kunio, M. Shimizu, K. Yamada, M. Enomoto, The role of prior austenite grains in fatigue crack initiation and propagation in low carbon martensite, Fatigue Eng Mater 2 (1979) 237-249.

DOI: 10.1111/j.1460-2695.1979.tb01083.x

Google Scholar

[13] Y. J. Li, D. Ponge, P. Choi, D. Raabe, Segregation of boron at prior austenite grain boundaries in a quenched martensitic steel studied by atom probe tomography, Scripta Mater 96 (2015) 13-16.

DOI: 10.1016/j.scriptamat.2014.09.031

Google Scholar

[14] T. Furuhara, H. Kawata, S. Morito, G. Miyamoto, T. Maki, Variant selection in grain boundary nucleation of upper bainite, Metall Mater Trans A 39A (2008) 1005-1013.

DOI: 10.1007/s11661-008-9510-9

Google Scholar