[1]
E. Maire, O. Bouaziz, M. Di Michail, C. Verdu, Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography, Acta Mater 56 (2008) 4954–4964.
DOI: 10.1016/j.actamat.2008.06.015
Google Scholar
[2]
C. C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, D. Raabe, An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design, Annu. Rev. Mater. Res. 45 (2015).
DOI: 10.1146/annurev-matsci-070214-021103
Google Scholar
[3]
M. Erdogan, S. Tekeli, The effect of martensite particle size on tensile fracture of surface-carburised AISI 8620 steel with dual phase core microstructure, Mater. Des 23 (2002) 597-604.
DOI: 10.1016/s0261-3069(02)00065-1
Google Scholar
[4]
M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging, Acta Mater 59 (2011) 658-670.
DOI: 10.1016/j.actamat.2010.10.002
Google Scholar
[5]
Alaie, S. Ziaei Rad, J. Kadkhodapour, M. Jafari, M. Asadi Asadabad, S. Schmauder, Mater. Sci. Eng. A 638 (2015) 251-261.
DOI: 10.1016/j.msea.2015.04.071
Google Scholar
[6]
D. Das, P. P. Chattopadhyay, Influence of martensite morphology on the work-hardening behavior of high strength ferrite-martensite dual-phase steel, J Mater Sci 44 (2009) 2957-2965.
DOI: 10.1007/s10853-009-3392-0
Google Scholar
[7]
M. Mazinani, W. J. Poole, Effect of martensite plasticity on the deformation behavior of a low-carbon dual-phase steel, Metall. Mater. Trans. A 38 (2007) 328-339.
DOI: 10.1007/s11661-006-9023-3
Google Scholar
[8]
G. Avramovic-Cingara, Y. Ososkov, M. K. Jain, D. S. Wilkinson, Effect of martensite distribution on damage behaviour in DP600 dual phase steels, Mater. Sci. Eng. A 516 (2009) 7-16.
DOI: 10.1016/j.msea.2009.03.055
Google Scholar
[9]
S. Zaefferer, N-N. Elhami, Theory and application of electron channeling contrast imaging under controlled diffraction conditions, Acta Mater 75 (2014) 20-50.
DOI: 10.1016/j.actamat.2014.04.018
Google Scholar
[10]
C. Cayron, ARPGE: a computer program to automatically reconstruct the parent grains from electron backscatter diffraction data, J. Appl. Cryst. 40 (2007) 1183-1188.
DOI: 10.1107/s0021889807048777
Google Scholar
[11]
Azuma, S. Goutianos, N. Hansen, G. Winther, X. Huang, Effect of hardness of martensite and ferrite on void formation in dual phase steel, Mater Sci Technol 28 (2012) 1092-1100.
DOI: 10.1179/1743284712y.0000000006
Google Scholar
[12]
T. Kunio, M. Shimizu, K. Yamada, M. Enomoto, The role of prior austenite grains in fatigue crack initiation and propagation in low carbon martensite, Fatigue Eng Mater 2 (1979) 237-249.
DOI: 10.1111/j.1460-2695.1979.tb01083.x
Google Scholar
[13]
Y. J. Li, D. Ponge, P. Choi, D. Raabe, Segregation of boron at prior austenite grain boundaries in a quenched martensitic steel studied by atom probe tomography, Scripta Mater 96 (2015) 13-16.
DOI: 10.1016/j.scriptamat.2014.09.031
Google Scholar
[14]
T. Furuhara, H. Kawata, S. Morito, G. Miyamoto, T. Maki, Variant selection in grain boundary nucleation of upper bainite, Metall Mater Trans A 39A (2008) 1005-1013.
DOI: 10.1007/s11661-008-9510-9
Google Scholar