Microstructure Evolution and Deformation Mechanisms of Harmonic Structure Designed Materials

Article Preview

Abstract:

This paper presents the novel microstructure design, called Harmonic Structure, which gives structural metallic materials outstanding mechanical properties through an innovative powder metallurgy process. Homogeneous and ultra-fine grain (UFG) structure enables the materials high strength. However, such a “Homo-“ and “UFG” microstructure does not, usually, satisfy the need to be both strong and ductile, due to the plastic instability in the early stage of the deformation. As opposed to such a “Homo-and UFG“ microstructure, “Harmonic Structure” has a heterogeneous microstructure consisting of bimodal grain size together with a controlled and specific topological distribution of fine and coarse grains. In other words, the harmonic structure is heterogeneous on micro-but homogeneous on macro-scales. In the present work, the harmonic structure design has been applied to pure metals and alloys via a powder metallurgy route consisting of controlled severe plastic deformation of the corresponding powders by mechanical milling or high pressure gas milling, and subsequent consolidation by SPS. At a macro-scale, the harmonic structure materials exhibited superior combination of strength and ductility as compared to their homogeneous microstructure counterparts. This behavior was essentially related to the ability of the harmonic structure to promote the uniform distribution of strain during plastic deformation, leading to improved mechanical properties by avoiding or delaying localized plastic instability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-150

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Mater. 61(2013) 782-817.

DOI: 10.1016/j.actamat.2012.10.038

Google Scholar

[2] N. Hansen, Hall-Petch relation and boundary strengthening, Scr. Mater. 51(2004) 801-806.

DOI: 10.1016/j.scriptamat.2004.06.002

Google Scholar

[3] M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater. Sci. 51(2006) 427-556.

Google Scholar

[4] E. Ma, Instability and ductility of nanocrystalline and ultrafine-grained metals, Scr. Mater. 49(2003) 663-668.

DOI: 10.1016/s1359-6462(03)00396-8

Google Scholar

[5] N. Tsuji, N. Kamikawa, R. Ueji, N. Takata, H. Koyama, D. Terada, Managing both strength and ductility in ultrafine grained steels, ISIJ Int. 48(2008) 1114-1121.

DOI: 10.2355/isijinternational.48.1114

Google Scholar

[6] H. Fujiwara, R. Akada, A. Noro, Y. Yoshita, K. Ameyama, Enhanced mechanical properties of nano/meso hybrid structure materials produced by hot roll sintering process, J. Mater. Trans. 49(2008) 90-96.

DOI: 10.2320/matertrans.me200703

Google Scholar

[7] G. Dirras, J. Gubicza, S. Ramtani, Q.H. Bui, T. Szilagyi, Microstructure and mechanical characteristics of bulk polycrystalline Ni consolidated from blends of powders with different particle size, Mater. Sci. Eng. A 527 (2010) 1206-1214.

DOI: 10.1016/j.msea.2009.09.050

Google Scholar

[8] Y. Wang, M. Chen, F. Zhou, E. Ma, High tensile ductility in a nanostructured metal, Nature 419 (2002) 912-915.

DOI: 10.1038/nature01133

Google Scholar

[9] Y.M. Wang, E. Ma, Three strategies to achieve uniform tensile deformation in a nanostructured metal, Acta Mater. 52 (2004) 1699-1709.

DOI: 10.1016/j.actamat.2003.12.022

Google Scholar

[10] D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, E. Lavernia, Al-Mg alloy engineered with bimodal grain size for high strength and increased ductility, Scripta Mater. 49 (2003) 297-302.

DOI: 10.1016/s1359-6462(03)00283-5

Google Scholar

[11] T. Sekiguchi, K. Ono, H. Fujiwara, K. Ameyama, New microstructure design for commercially pure titanium with outstanding mechanical properties by mechanical milling and hot roll sintering, J. Mater. Trans. 51 (2010) 39-45.

DOI: 10.2320/matertrans.mb200913

Google Scholar

[12] D. Orlov, H. Fujiwara, K. Ameyama, Obtaining copper with harmonic structure for the optimal balance of structure-performance relationship, J. Mater. Trans. 54 (2013) 1549-1553.

DOI: 10.2320/matertrans.mh201320

Google Scholar

[13] O.P. Ciuca, M. Ota, S. Deng, K. Ameyama, Harmonic structure design of a SUS329J1 two phase stainless steel and its mechanical properties, J. Mater. Trans. 54 (2013) 1629-1633.

DOI: 10.2320/matertrans.mh201321

Google Scholar

[14] C. Sawangrat, O. Yamaguchi, S.K. Vajpai, K. Ameyama, Application of harmonic structure design to biomedical Co-Cr-Mo alloy for improved mechanical properties, J. Mater. Trans. 55(2014) 99-105.

DOI: 10.2320/matertrans.ma201303

Google Scholar

[15] Z. Zhang, S.K. Vajpai, D. Orlov, K. Ameyama, Improvement of mechanical properties in SUS304L steel through the control of bimodal microstructure characteristics, Mater. Sci. Eng. A 598 (2014) 106-113.

DOI: 10.1016/j.msea.2014.01.023

Google Scholar

[16] Z. Zhang, D. Orlov, S. K. Vajpai, B. Tong, K. Ameyama, Importance of Bimodal Structure Topology in the Control of Mechanical Properties of a Stainless Steel, J. Advanced Engineering Materials, 17(2015) 791–795.

DOI: 10.1002/adem.201400358

Google Scholar

[17] M. Ota, S.K. Vajpai, R. Imao, K. Kurokawa, K. Ameyama, Application of High Pressure Gas Jet Mill Process to Fabricate High Performance Pure Titanium, J. Mater. Trans. 56(2015) 154-159.

DOI: 10.2320/matertrans.m2014280

Google Scholar

[18] S.K. Vajpai, M. Ota, T. Watanabe, R. Maeda, T. Sekiguchi, T. Kusaka, K. Ameyama, The Development of High Performance Ti-6Al-4V Alloy via a Unique Microstructural Design with Bimodal Grain Size Distribution, Metal. Mater. Trans. A, 46A(2015).

DOI: 10.1007/s11661-014-2649-7

Google Scholar

[19] H. Yu, I. Watanabe, K. Ameyama, Deformation Behavior Analysis of Harmonic Structure Materials by Multi-Scale Finite Element Analysis, Advanced Materials Research, 1088(2015) 853-857.

DOI: 10.4028/www.scientific.net/amr.1088.853

Google Scholar

[20] G. Dirras, M. Ota, D. Tingaud, K. Ameyama, T. Sekiguchi, Microstructure evolution during direct impact loading of commercial purity α-titanium with harmonic structure design, Matériaux & Techniques, 103 / 311(2015) 1-9.

DOI: 10.1051/mattech/2015031

Google Scholar

[21] S.K. Vajpai, C. Sawangrat, O. Yamaguchi, O.P. Ciuca, K. AMEYAMA, Effect of Bimodal Harmonic Structure Design on the Deformation Behaviour and Mechanical Properties of Co-Cr-Mo Alloy, Materials Science and Engineering C, 58(2016) 1008-1015.

DOI: 10.1016/j.msec.2015.09.055

Google Scholar

[22] N. Modoux, P. Hosek, L. Pailleres, J.R. Authelin, Micronization of pharmaceutical substances in a spiral jet mill, J. Powder Tech. 104 (1999) 113-120.

DOI: 10.1016/s0032-5910(99)00052-2

Google Scholar