[1]
Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Mater. 61(2013) 782-817.
DOI: 10.1016/j.actamat.2012.10.038
Google Scholar
[2]
N. Hansen, Hall-Petch relation and boundary strengthening, Scr. Mater. 51(2004) 801-806.
DOI: 10.1016/j.scriptamat.2004.06.002
Google Scholar
[3]
M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater. Sci. 51(2006) 427-556.
Google Scholar
[4]
E. Ma, Instability and ductility of nanocrystalline and ultrafine-grained metals, Scr. Mater. 49(2003) 663-668.
DOI: 10.1016/s1359-6462(03)00396-8
Google Scholar
[5]
N. Tsuji, N. Kamikawa, R. Ueji, N. Takata, H. Koyama, D. Terada, Managing both strength and ductility in ultrafine grained steels, ISIJ Int. 48(2008) 1114-1121.
DOI: 10.2355/isijinternational.48.1114
Google Scholar
[6]
H. Fujiwara, R. Akada, A. Noro, Y. Yoshita, K. Ameyama, Enhanced mechanical properties of nano/meso hybrid structure materials produced by hot roll sintering process, J. Mater. Trans. 49(2008) 90-96.
DOI: 10.2320/matertrans.me200703
Google Scholar
[7]
G. Dirras, J. Gubicza, S. Ramtani, Q.H. Bui, T. Szilagyi, Microstructure and mechanical characteristics of bulk polycrystalline Ni consolidated from blends of powders with different particle size, Mater. Sci. Eng. A 527 (2010) 1206-1214.
DOI: 10.1016/j.msea.2009.09.050
Google Scholar
[8]
Y. Wang, M. Chen, F. Zhou, E. Ma, High tensile ductility in a nanostructured metal, Nature 419 (2002) 912-915.
DOI: 10.1038/nature01133
Google Scholar
[9]
Y.M. Wang, E. Ma, Three strategies to achieve uniform tensile deformation in a nanostructured metal, Acta Mater. 52 (2004) 1699-1709.
DOI: 10.1016/j.actamat.2003.12.022
Google Scholar
[10]
D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, E. Lavernia, Al-Mg alloy engineered with bimodal grain size for high strength and increased ductility, Scripta Mater. 49 (2003) 297-302.
DOI: 10.1016/s1359-6462(03)00283-5
Google Scholar
[11]
T. Sekiguchi, K. Ono, H. Fujiwara, K. Ameyama, New microstructure design for commercially pure titanium with outstanding mechanical properties by mechanical milling and hot roll sintering, J. Mater. Trans. 51 (2010) 39-45.
DOI: 10.2320/matertrans.mb200913
Google Scholar
[12]
D. Orlov, H. Fujiwara, K. Ameyama, Obtaining copper with harmonic structure for the optimal balance of structure-performance relationship, J. Mater. Trans. 54 (2013) 1549-1553.
DOI: 10.2320/matertrans.mh201320
Google Scholar
[13]
O.P. Ciuca, M. Ota, S. Deng, K. Ameyama, Harmonic structure design of a SUS329J1 two phase stainless steel and its mechanical properties, J. Mater. Trans. 54 (2013) 1629-1633.
DOI: 10.2320/matertrans.mh201321
Google Scholar
[14]
C. Sawangrat, O. Yamaguchi, S.K. Vajpai, K. Ameyama, Application of harmonic structure design to biomedical Co-Cr-Mo alloy for improved mechanical properties, J. Mater. Trans. 55(2014) 99-105.
DOI: 10.2320/matertrans.ma201303
Google Scholar
[15]
Z. Zhang, S.K. Vajpai, D. Orlov, K. Ameyama, Improvement of mechanical properties in SUS304L steel through the control of bimodal microstructure characteristics, Mater. Sci. Eng. A 598 (2014) 106-113.
DOI: 10.1016/j.msea.2014.01.023
Google Scholar
[16]
Z. Zhang, D. Orlov, S. K. Vajpai, B. Tong, K. Ameyama, Importance of Bimodal Structure Topology in the Control of Mechanical Properties of a Stainless Steel, J. Advanced Engineering Materials, 17(2015) 791–795.
DOI: 10.1002/adem.201400358
Google Scholar
[17]
M. Ota, S.K. Vajpai, R. Imao, K. Kurokawa, K. Ameyama, Application of High Pressure Gas Jet Mill Process to Fabricate High Performance Pure Titanium, J. Mater. Trans. 56(2015) 154-159.
DOI: 10.2320/matertrans.m2014280
Google Scholar
[18]
S.K. Vajpai, M. Ota, T. Watanabe, R. Maeda, T. Sekiguchi, T. Kusaka, K. Ameyama, The Development of High Performance Ti-6Al-4V Alloy via a Unique Microstructural Design with Bimodal Grain Size Distribution, Metal. Mater. Trans. A, 46A(2015).
DOI: 10.1007/s11661-014-2649-7
Google Scholar
[19]
H. Yu, I. Watanabe, K. Ameyama, Deformation Behavior Analysis of Harmonic Structure Materials by Multi-Scale Finite Element Analysis, Advanced Materials Research, 1088(2015) 853-857.
DOI: 10.4028/www.scientific.net/amr.1088.853
Google Scholar
[20]
G. Dirras, M. Ota, D. Tingaud, K. Ameyama, T. Sekiguchi, Microstructure evolution during direct impact loading of commercial purity α-titanium with harmonic structure design, Matériaux & Techniques, 103 / 311(2015) 1-9.
DOI: 10.1051/mattech/2015031
Google Scholar
[21]
S.K. Vajpai, C. Sawangrat, O. Yamaguchi, O.P. Ciuca, K. AMEYAMA, Effect of Bimodal Harmonic Structure Design on the Deformation Behaviour and Mechanical Properties of Co-Cr-Mo Alloy, Materials Science and Engineering C, 58(2016) 1008-1015.
DOI: 10.1016/j.msec.2015.09.055
Google Scholar
[22]
N. Modoux, P. Hosek, L. Pailleres, J.R. Authelin, Micronization of pharmaceutical substances in a spiral jet mill, J. Powder Tech. 104 (1999) 113-120.
DOI: 10.1016/s0032-5910(99)00052-2
Google Scholar