A Comparative Study of Molecular Motion Cooperativity in Polymeric and Metallic Glass-Forming Liquids

Article Preview

Abstract:

In order to investigate the relationship between the bonding nature and the cooperative relaxation, a comparative study of the relaxation behavior in polymeric and metallic glass forming systems has been performed based on the Bond Strength–Coordination Number Fluctuation (BSCNF) model developed by the authors. In the present work, we studied the correlations between the fragility m, the Vogel temperature T0, the degree of molecular cooperativity NB, and the Kohlrausch exponent βKWW. The results show that T0 and NB increase, whereas βKWW decreases systematically with the increase of m. Reflecting the difference of the interatomic interactions of the materials considered, the analysis by the present study reveals that the value of NB in ion-conducing polymers is about 5 times larger than that in metallic systems, and for each system, the material dependence of βKWW is clearly seen in the fragility index m and the cooperativity NB.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

151-156

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.A. Kivelson, G. Tarjus: Nature Mater. 7 (2008) 831.

Google Scholar

[2] E. Donth: J. Non-Cryst. Solids 307-310 (2002) 364.

Google Scholar

[3] T. Rouxel: J. Chem. Phys. 135 (2011) 184501.

Google Scholar

[4] E. Hempel, G. Hempel, A. Hensel, C. Schick, E. Donth: J. Phys. Chem. B 104 (2000) 2460.

Google Scholar

[5] M. Aniya: J. Therm. Anal. Cal. 69 (2002) 971.

Google Scholar

[6] M. Aniya, T. Shinkawa: Mater. Trans. 48 (2007) 1793.

Google Scholar

[7] M. Ikeda, M. Aniya: Materials 3 (2010) 5246.

Google Scholar

[8] M. Ikeda, M. Aniya: Intermet. 18 (2010) 1796.

Google Scholar

[9] M. Ikeda, M. Aniya: J. Non-Cryst. Solids 431 (2016) 52.

Google Scholar

[10] M. Ikeda, M. Aniya: J. Non-Cryst. Solids 371-372 (2013) 53.

Google Scholar

[11] V. B. Kokshenev: Physica A 262 (1999) 88.

Google Scholar

[12] M. Aniya, M. Ikeda: Phys. Proc. 48 (2013) 113.

Google Scholar

[13] M. Aniya, M. Ikeda: Mater. Sci. Forum 783-786 (2014) 1889.

Google Scholar

[14] C. Svanberg: J. Appl. Phys. 94 (2003) 4191.

Google Scholar

[15] R. Böhmer, K. L. Ngai, C. A. Angell, D. J. Plazek: J. Chem. Phys. 99 (1993) 4201.

Google Scholar

[16] K. Schröter, E. Donth: J. Non-Cryst. Solids 307-310 (2002) 270.

Google Scholar

[17] T. A. Vilgis: Phys Rev. 47 (1993) 2882.

Google Scholar

[18] A. Saiter, N. Delpouve, E. Dargent, J. M. Saiter: Eur. Polym. J. 43 (2007) 4675.

Google Scholar

[19] K. Saksl, H. Franz, P. Jóvári, K. Klementiev, E. Welter, A. Ehnes, J. Saida, A. Inoue, J. Z. Jiang: Appl. Phys. Lett. 83 (2003) 3924.

DOI: 10.1063/1.1626266

Google Scholar

[20] K. L. Ngai: J. Non-Cryst. Solids 275 (2000) 7.

Google Scholar

[21] M. G. McLin, C. A. Angell: J. Phys. Chem. 95 (1991) 9464.

Google Scholar

[22] M. G. McLin, C. A. Angell: Polymer 37 (1996) 4713.

Google Scholar

[23] H. Tanaka: J. Non-Cryst. Solids 351 (2005) 678.

Google Scholar

[24] Y. Zhao, X. Bian, K. Yin, J. Zhou, J. Zhang, X. Hou: Physica B 349 (2004) 327.

Google Scholar