[1]
A. Chamanfar et al., Microstructural characteristics of forged and heat treated Inconel 718 disks, Materials and Design, pp.791-800, (2013).
DOI: 10.1016/j.matdes.2013.06.004
Google Scholar
[2]
Y. Wang, W. Shao, L. Zhen, and B. Zhang, Hot deformation behavior of delta-processed superalloy 718, Material Science and Engineering A, vol. 528, pp.3218-3227, (2011).
DOI: 10.1016/j.msea.2011.01.013
Google Scholar
[3]
ASM International, ASM Specialty Handbook - Heat Resistant Materials.
Google Scholar
[4]
Kh. Al-hatab, M. Al-bukhaiti, U. Krupp, and M. Kantehm, Cyclic oxidation behavior of IN 718 superalloy in air at high temperatures, Oxidation of Materials, pp.209-228, (2011).
DOI: 10.1007/s11085-010-9230-6
Google Scholar
[5]
M. Qian and J. Lippold, Liquation phenomena in the simulated heat-affected zone of Alloy 718 after multiple postweld heat treatment cycles, Welding Journal, pp.145-150, (2003).
Google Scholar
[6]
M. Mehl and J. Lippold, Effect of delta phase precipitation on the repair weldability of Alloy 718, Superalloys 718, 625, 706 and Various Derivatives, pp.731-741, (1997).
DOI: 10.7449/1997/superalloys_1997_731_741
Google Scholar
[7]
M. Mecham. (2001) Aviation Week Network. [Online]. http: /aviationweek. com/awin/blue-arc-advancement.
Google Scholar
[8]
A. Mateo Garcia, BLISK fabrication by linear friction welding, in Advances in Gas Turbine Technology.: InTech, November 2011, pp.411-434.
DOI: 10.5772/21278
Google Scholar
[9]
Rolled Alloys Inc., Certified Materials Test Report, (2014).
Google Scholar
[10]
P. Wanjara and M. Jahazi, Linear friction welding of Ti-6Al-4V: Processing, microstructure and mechanical property inter-relationships, Metallurgical and Materials Transactions A, vol. 36A, pp.2149-2164, (2005).
DOI: 10.1007/s11661-005-0335-5
Google Scholar
[11]
T. Holden, Neutron diffraction in practical residual stress measurement methods, G. Schajer, Ed.: Wiley, (2013).
DOI: 10.1002/9781118402832.ch8
Google Scholar
[12]
M. Daymond and N. Bonner, Measurement of strain in a titanium linear friction weld by neutron diffraction, Physica B, vol. 325, pp.130-137, (2003).
DOI: 10.1016/s0921-4526(02)01514-4
Google Scholar
[13]
M. Preuss, P. Withers, and G. Baxter, A comparison of intertia friction welds in three nickel base superalloys, Materials Science and Engineering A, vol. 437, pp.38-45, (2006).
DOI: 10.1016/j.msea.2006.04.058
Google Scholar
[14]
N. Iqbal et al., A comparison of residual stress development in inertia friction welded fine grain and coarse grain nickel base superalloy, Metallurgical and Materials Transactions A, vol. 42A, pp.4056-4063, (2011).
DOI: 10.1007/s11661-011-0802-0
Google Scholar
[15]
ASTM, Standard guide for preparation of metallographic specimens, (2001).
Google Scholar