An Appraisal of Direct Quenching for the Development and Processing of Novel Super-High Strength Steels

Article Preview

Abstract:

Recent interests in developing novel super-high strength steels have led to extensive research efforts in direct quenching with or without tempering (DQ, DQT) or combined with partitioning (DQP). Both strip and plate products have been targeted for different applications. For boron-microalloyed DQ/DQT steels, the ASTM A255 approach for predicting the hardenability was considered inapplicable. Fresh attempts were made to develop new hardenability models through non-linear regression analysis by dynamically varying both the boron factor and multiplying factors of most elements in the alloy factor. Based on the recent concept of quenching and partitioning (Q&P), a novel processing route comprising thermomechanical rolling followed by direct quenching and partitioning (TMR-DQP) has been established for the development of ultra-high strength structural steels with yield strengths ≈1100 MPa combined with good uniform and total elongations and impact toughness. Examples of recent advances made in DQ processing and associated challenges, such as those related to the bendability of low carbon martensitic-bainitic steels and influence of boron on the toughness of Nb-bearing martensitic steels are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1819-1827

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Kozasu, Metallurgical framework of direct-quenching of steel, in: T. Chandra, T. Sakai (Eds. ), Proc. Intern. Conf. Thermomechanical Proc. Steels and Other Materials (THERMEC'97), Wollongong, The Minerals, Metals and Materials Society, Warrendale, PA, 1997, pp.47-55.

Google Scholar

[2] C. Ouchi, Development of steel plates by intensive use of TMCP and direct quenching processes, ISIJ Int. 41 (2001) 542-553.

DOI: 10.2355/isijinternational.41.542

Google Scholar

[3] K. Okamoto, A. Yoshie, H. Nakao, Physical metallurgy of direct quenched steel plates and its application for commercial processes and products, in: K.A. Taylor, S.W. Thompson, F.B. Fletcher (Eds. ), Proc. Intern. Symp. Phys. Metall. Direct-Quenched Steels, Chicago, IL, The Minerals, Metals and Materials Society, Warrendale, PA, 1992, pp.339-405.

Google Scholar

[4] ASTM A255-10 (2014), Standard Test Method for End-Quench Test for Hardenability of Steel, ASTM International, West Conshohocken, PA, 2014, www. astm. org.

Google Scholar

[5] M.C. Somani, D.A. Porter, J.M. Pyykkönen, J.M. Tarkka, J.I. Kömi, T.A. Intonen, L.P. Karjalainen, The effect of composition on phase transformation temperatures and hardenability in direct quenching, in: Proc. Intern. Conf. Microalloyed Steels: Processing, Microstructure, Properties and Perform. (MA'07), AIST, Warrendale, PA, 2007, pp.95-106.

DOI: 10.1520/mpc20150001

Google Scholar

[6] M.C. Somani, J.M. Pyykkönen, D.A. Porter, L.P. Karjalainen, J.I. Kömi, Influence of composition and prior deformation on phase transformation temperatures and hardness in direct quenching using physical simulation, J. Mater. Perform. Charact., 4 (2015).

DOI: 10.1520/mpc20150001

Google Scholar

[7] M.C. Somani, L.P. Karjalainen, D.A. Porter, D.K. Misra, Evaluation of the behaviour and properties of a high-Si steel processed using direct quenching and partitioning, Mater. Sci. Forum 706-709 (2012) 2824-2829.

DOI: 10.4028/www.scientific.net/msf.706-709.2824

Google Scholar

[8] M.C. Somani, D.A. Porter, L.P. Karjalainen, D.K. Misra, Evaluation of DQ&P processing route for the development of ultra-high strength tough ductile steels, Intern. J. Metall. Eng. 2 (2013) 154-160.

DOI: 10.4028/www.scientific.net/msf.783-786.1009

Google Scholar

[9] M.C. Somani, D.A. Porter, L.P. Karjalainen, D.K. Misra, Designing a novel DQ&P process through physical simulation studies, Mater. Sci. Forum 762 (2013) 83-88.

DOI: 10.4028/www.scientific.net/msf.762.83

Google Scholar

[10] J.G. Speer, D.V. Edmonds, F.C. Rizzo, D.K. Matlock, Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation, Curr. Opin. Solid State Mater. Sci. 8 (2004).

DOI: 10.1016/j.cossms.2004.09.003

Google Scholar

[11] A.J. Kaijalainen, P. Suikkanen, L.P. Karjalainen, J.J. Jonas, Effect of austenite pancaking on the microstructure, texture, and bendability of an ultrahigh-strength strip steel, Metall. Mater. Trans. A. 45A (2014) 1273–1283.

DOI: 10.1007/s11661-013-2062-7

Google Scholar

[12] P. Yan, H.K.D.H. Bhadeshia, The austenite-ferrite transformation in enhanced-niobium, low carbon steel, Mater. Sci. Technol. 31 (2015) 1066-1076.

DOI: 10.1179/1743284714y.0000000673

Google Scholar

[13] E. De Moor, S. Lacroix, A.J. Clarke, J. Penning, J.G. Speer, Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels, Metall. Mater. Trans. A 39A (2008) 2586-2595.

DOI: 10.1007/s11661-008-9609-z

Google Scholar

[14] M.J. Santofimia, L. Zhao, J. Sietsma, Volume change associated to carbon partitioning from martensite to austenite, Mater. Sci. Forum 706-709 (2012) 2290-2295.

DOI: 10.4028/www.scientific.net/msf.706-709.2290

Google Scholar

[15] M.C. Somani, D.A. Porter, L.P. Karjalainen, D.K. Misra, On the decomposition of austenite in a high-silicon steel during quenching and partitioning, in: Proc. Intern. Symp. Recent Develop. Steel Proc., MS&T'12, Pittsburgh, PA, MS&T Partner Societies, 2012, pp.1013-1020.

DOI: 10.1007/s11661-013-2053-8

Google Scholar

[16] M.C. Somani, D.A. Porter, L.P. Karjalainen, R.D.K. Misra, On various aspects of decomposition of austenite in a high-silicon steel during quenching and partitioning, Metall. Mater. Trans. A 45A (2014) 1247-1257.

DOI: 10.1007/s11661-013-2053-8

Google Scholar

[17] D. Kim, J.G. Speer, B.C. De Cooman, Isothermal transformation of a CMnSi steel below the Ms temperature, Metall. Mater. Trans. A 42A (2011)1575-1585.

DOI: 10.1007/s11661-010-0557-z

Google Scholar

[18] H.Y. Li, X.W. Lu, W.J. Li, X.J. Jin, Microstructure and mechanical properties of an ultra-high strength 40SiMnNiCr steel during the one-step quenching and partitioning process, Metall. Mater. Trans. A 41A (2010) 1284-1300.

DOI: 10.1007/s11661-010-0184-8

Google Scholar

[19] M.J. Santofimia, J.G. Speer, A.J. Clarke, L. Zhao, J. Sietsma, Influence of interface mobility on the evolution of austenite-martensite grain assemblies during annealing, Acta Mater. 57 (2009) 4548-4557.

DOI: 10.1016/j.actamat.2009.06.024

Google Scholar

[20] M.C. Somani, D.A. Porter, L.P. Karjalainen, P.P. Suikkanen, R.D.K. Misra, Process design for tough ductile martensitic steels through direct quenching and partitioning, J. Mater. Today: Proc. 2S (2015) S631-S634.

DOI: 10.1016/j.matpr.2015.07.363

Google Scholar

[21] K. Sugimoto, B. Yu, Y. Mukai, S. Ikeda, Microstructure and formability of aluminum bearing TRIP-aided steels with annealed martensite matrix, ISIJ Int. 45 (2005) 1194-1200.

DOI: 10.2355/isijinternational.45.1194

Google Scholar

[22] A.J. Kaijalainen, P.P. Suikkanen, L.P. Karjalainen, D.A. Porter, Influence of subsurface microstructure on the bendability of ultrahigh-strength strip steel, Mater. Sci. Eng. A 654 (2016) 151-160.

DOI: 10.1016/j.msea.2015.12.030

Google Scholar

[23] A.J. Kaijalainen, P.P. Suikkanen, T.J. Limnell, L.P. Karjalainen, J.I. Kömi, D.A. Porter, Effect of austenite grain structure on the strength and toughness of direct-quenched martensite, J. Alloys and Compounds 577 (2013) S642-S648.

DOI: 10.1016/j.jallcom.2012.03.030

Google Scholar

[24] W. Yan, Y.Y. Shan, K. Yang, Effect of TiN inclusions on the impact toughness of low-carbon microalloyed steels, Metall. Mater. Trans. A 37A (2006) 2147-2158.

DOI: 10.1007/bf02586135

Google Scholar

[25] J. Hannula, D.A. Porter, M.C. Somani, A. Kaijalainen, P. Suikkanen, Effect of niobium and boron on the strength and toughness of abrasive wear resistant direct-quenched low-carbon steel, in: Proc. Intern. Niobium Wear Symp., Sao Paulo, Brazil (2015).

DOI: 10.1007/s11661-017-4295-3

Google Scholar