[1]
I. Kozasu, Metallurgical framework of direct-quenching of steel, in: T. Chandra, T. Sakai (Eds. ), Proc. Intern. Conf. Thermomechanical Proc. Steels and Other Materials (THERMEC'97), Wollongong, The Minerals, Metals and Materials Society, Warrendale, PA, 1997, pp.47-55.
Google Scholar
[2]
C. Ouchi, Development of steel plates by intensive use of TMCP and direct quenching processes, ISIJ Int. 41 (2001) 542-553.
DOI: 10.2355/isijinternational.41.542
Google Scholar
[3]
K. Okamoto, A. Yoshie, H. Nakao, Physical metallurgy of direct quenched steel plates and its application for commercial processes and products, in: K.A. Taylor, S.W. Thompson, F.B. Fletcher (Eds. ), Proc. Intern. Symp. Phys. Metall. Direct-Quenched Steels, Chicago, IL, The Minerals, Metals and Materials Society, Warrendale, PA, 1992, pp.339-405.
Google Scholar
[4]
ASTM A255-10 (2014), Standard Test Method for End-Quench Test for Hardenability of Steel, ASTM International, West Conshohocken, PA, 2014, www. astm. org.
Google Scholar
[5]
M.C. Somani, D.A. Porter, J.M. Pyykkönen, J.M. Tarkka, J.I. Kömi, T.A. Intonen, L.P. Karjalainen, The effect of composition on phase transformation temperatures and hardenability in direct quenching, in: Proc. Intern. Conf. Microalloyed Steels: Processing, Microstructure, Properties and Perform. (MA'07), AIST, Warrendale, PA, 2007, pp.95-106.
DOI: 10.1520/mpc20150001
Google Scholar
[6]
M.C. Somani, J.M. Pyykkönen, D.A. Porter, L.P. Karjalainen, J.I. Kömi, Influence of composition and prior deformation on phase transformation temperatures and hardness in direct quenching using physical simulation, J. Mater. Perform. Charact., 4 (2015).
DOI: 10.1520/mpc20150001
Google Scholar
[7]
M.C. Somani, L.P. Karjalainen, D.A. Porter, D.K. Misra, Evaluation of the behaviour and properties of a high-Si steel processed using direct quenching and partitioning, Mater. Sci. Forum 706-709 (2012) 2824-2829.
DOI: 10.4028/www.scientific.net/msf.706-709.2824
Google Scholar
[8]
M.C. Somani, D.A. Porter, L.P. Karjalainen, D.K. Misra, Evaluation of DQ&P processing route for the development of ultra-high strength tough ductile steels, Intern. J. Metall. Eng. 2 (2013) 154-160.
DOI: 10.4028/www.scientific.net/msf.783-786.1009
Google Scholar
[9]
M.C. Somani, D.A. Porter, L.P. Karjalainen, D.K. Misra, Designing a novel DQ&P process through physical simulation studies, Mater. Sci. Forum 762 (2013) 83-88.
DOI: 10.4028/www.scientific.net/msf.762.83
Google Scholar
[10]
J.G. Speer, D.V. Edmonds, F.C. Rizzo, D.K. Matlock, Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation, Curr. Opin. Solid State Mater. Sci. 8 (2004).
DOI: 10.1016/j.cossms.2004.09.003
Google Scholar
[11]
A.J. Kaijalainen, P. Suikkanen, L.P. Karjalainen, J.J. Jonas, Effect of austenite pancaking on the microstructure, texture, and bendability of an ultrahigh-strength strip steel, Metall. Mater. Trans. A. 45A (2014) 1273–1283.
DOI: 10.1007/s11661-013-2062-7
Google Scholar
[12]
P. Yan, H.K.D.H. Bhadeshia, The austenite-ferrite transformation in enhanced-niobium, low carbon steel, Mater. Sci. Technol. 31 (2015) 1066-1076.
DOI: 10.1179/1743284714y.0000000673
Google Scholar
[13]
E. De Moor, S. Lacroix, A.J. Clarke, J. Penning, J.G. Speer, Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels, Metall. Mater. Trans. A 39A (2008) 2586-2595.
DOI: 10.1007/s11661-008-9609-z
Google Scholar
[14]
M.J. Santofimia, L. Zhao, J. Sietsma, Volume change associated to carbon partitioning from martensite to austenite, Mater. Sci. Forum 706-709 (2012) 2290-2295.
DOI: 10.4028/www.scientific.net/msf.706-709.2290
Google Scholar
[15]
M.C. Somani, D.A. Porter, L.P. Karjalainen, D.K. Misra, On the decomposition of austenite in a high-silicon steel during quenching and partitioning, in: Proc. Intern. Symp. Recent Develop. Steel Proc., MS&T'12, Pittsburgh, PA, MS&T Partner Societies, 2012, pp.1013-1020.
DOI: 10.1007/s11661-013-2053-8
Google Scholar
[16]
M.C. Somani, D.A. Porter, L.P. Karjalainen, R.D.K. Misra, On various aspects of decomposition of austenite in a high-silicon steel during quenching and partitioning, Metall. Mater. Trans. A 45A (2014) 1247-1257.
DOI: 10.1007/s11661-013-2053-8
Google Scholar
[17]
D. Kim, J.G. Speer, B.C. De Cooman, Isothermal transformation of a CMnSi steel below the Ms temperature, Metall. Mater. Trans. A 42A (2011)1575-1585.
DOI: 10.1007/s11661-010-0557-z
Google Scholar
[18]
H.Y. Li, X.W. Lu, W.J. Li, X.J. Jin, Microstructure and mechanical properties of an ultra-high strength 40SiMnNiCr steel during the one-step quenching and partitioning process, Metall. Mater. Trans. A 41A (2010) 1284-1300.
DOI: 10.1007/s11661-010-0184-8
Google Scholar
[19]
M.J. Santofimia, J.G. Speer, A.J. Clarke, L. Zhao, J. Sietsma, Influence of interface mobility on the evolution of austenite-martensite grain assemblies during annealing, Acta Mater. 57 (2009) 4548-4557.
DOI: 10.1016/j.actamat.2009.06.024
Google Scholar
[20]
M.C. Somani, D.A. Porter, L.P. Karjalainen, P.P. Suikkanen, R.D.K. Misra, Process design for tough ductile martensitic steels through direct quenching and partitioning, J. Mater. Today: Proc. 2S (2015) S631-S634.
DOI: 10.1016/j.matpr.2015.07.363
Google Scholar
[21]
K. Sugimoto, B. Yu, Y. Mukai, S. Ikeda, Microstructure and formability of aluminum bearing TRIP-aided steels with annealed martensite matrix, ISIJ Int. 45 (2005) 1194-1200.
DOI: 10.2355/isijinternational.45.1194
Google Scholar
[22]
A.J. Kaijalainen, P.P. Suikkanen, L.P. Karjalainen, D.A. Porter, Influence of subsurface microstructure on the bendability of ultrahigh-strength strip steel, Mater. Sci. Eng. A 654 (2016) 151-160.
DOI: 10.1016/j.msea.2015.12.030
Google Scholar
[23]
A.J. Kaijalainen, P.P. Suikkanen, T.J. Limnell, L.P. Karjalainen, J.I. Kömi, D.A. Porter, Effect of austenite grain structure on the strength and toughness of direct-quenched martensite, J. Alloys and Compounds 577 (2013) S642-S648.
DOI: 10.1016/j.jallcom.2012.03.030
Google Scholar
[24]
W. Yan, Y.Y. Shan, K. Yang, Effect of TiN inclusions on the impact toughness of low-carbon microalloyed steels, Metall. Mater. Trans. A 37A (2006) 2147-2158.
DOI: 10.1007/bf02586135
Google Scholar
[25]
J. Hannula, D.A. Porter, M.C. Somani, A. Kaijalainen, P. Suikkanen, Effect of niobium and boron on the strength and toughness of abrasive wear resistant direct-quenched low-carbon steel, in: Proc. Intern. Niobium Wear Symp., Sao Paulo, Brazil (2015).
DOI: 10.1007/s11661-017-4295-3
Google Scholar