Characterization of Phase Transitions Occurring in Solution Treated Ti-15Mo during Heating by Thermal Expansion and Electrical Resistance Measurements

Article Preview

Abstract:

Metastable β titanium alloy Ti-15Mo was investigated in this study. In-situ electrical resistance and thermal expansion measurements conducted on solution treated material revealed influence of ongoing phase transitions on measured properties. The monotonicity of the dependence of electrical resistance on temperature changes at 225, 365 and 560 °C The thermal expansion deviates from linearity between 305 and 580 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2318-2323

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Leyens,M. Peters (Eds. ), Titaniumand titaniumalloys: fundamentals and applications, WileyVCH; John Wiley, 2003. doi: 10. 1002/3527602119.

Google Scholar

[2] G. Lütjering, J. C. Williams, Titanium, Engineering Materials, Processes, Springer Berlin Heidelberg, 2007. doi: 10. 1007/978-3-540-73036-1.

Google Scholar

[3] P. D. Frost, W. M. Parris, L. L. Hirsch, J. R. Doig, C. M. Schwartz, Isothermal transformation of titanium-chromium alloys, Transactions of American Society for Metals 46 (1954) 231.

Google Scholar

[4] B. S. Hickman, The formation of omega phase in titaniumand zirconiumalloys: a review, Journal of Materials Science 4 (6) (1969) 554-563.

Google Scholar

[5] D. De Fontaine, Mechanical instabilities in the b. c. c. lattice and the beta to omega phase transformation, Acta Metallurgica 18 (2) (1970) 275-279. doi: 10. 1016/0001-6160(70)90035-0.

DOI: 10.1016/0001-6160(70)90035-0

Google Scholar

[6] S. K. Sikka, Y. K. Vohra, R. Chidambaram, Omega phase in materials, Progress in Materials Science 27 (3) (1982) 245-310. doi: 10. 1016/0079-6425(82)90002-0.

DOI: 10.1016/0079-6425(82)90002-0

Google Scholar

[7] S. Banerjee, P. Mukhopadhyay, Phase transformations: examples from titanium and zirconium alloys, no. 12 in Pergamon materials series, Elsevier/Pergamon, (2007).

DOI: 10.1016/s1470-1804(07)80053-8

Google Scholar

[8] A. Devaraj, S. Nag, R. Srinivasan, R. Williams, S. Banerjee, R. Banerjee, H. Fraser, Experimental evidence of concurrent compositional and structural instabilities leading to ω precipitation in titanium-molybdenum alloys, Acta Materialia 60 (2) (2012).

DOI: 10.1016/j.actamat.2011.10.008

Google Scholar

[9] A.W. Bowen, Omega phase embrittlement in aged Ti-15% Mo, ScriptaMetallurgica 5 (8) (1971) 709-715. doi: 10. 1016/0036-9748(71)90258-4.

DOI: 10.1016/0036-9748(71)90258-4

Google Scholar

[10] D. De Fontaine, N. E. Paton, J. C. Williams, The omega phase transformation in titanium alloys as an example of displacement controlled reactions, ActaMetallurgica 19 (11) (1971) 1153-1162. doi: 10. 1016/0001-6160(71)90047-2.

DOI: 10.1016/0001-6160(71)90047-2

Google Scholar

[11] J. Šmilauerová, P. Harcuba, J. Pospíšil, Z. Matěj, V. Holý, Growth of ω inclusions in Ti alloys: An X-ray diffraction study, ActaMaterialia 61 (17) (2013) 6635-6645. doi: 10. 1016/j. actamat. 2013. 07. 059.

DOI: 10.1016/j.actamat.2013.07.059

Google Scholar

[12] T.W. Duerig, G. T. Terlinde, J. C. Williams, The ωphase reaction in titaniumalloy, in: H. Kimura, O. Izumi (Eds. ), Proceedings of the 4th Int'l Conference on Titanium, Vol. 2, Titanium'80 Science and Technology, 1980, pp.1299-1308.

Google Scholar

[13] J. C. Williams, M. J. Blackburn, The influence of misfit on the morphology and stability of the omega phase in titanium-transitionmetal alloys., Trans. Met. Soc. AIME 245 (1969) 2352-2355.

Google Scholar

[14] S. Nag, R. Banerjee, R. Srinivasan, J. Y. Hwang, M. Harper, H. L. Fraser, ω-assisted nucleation and growth of α precipitates in the Ti-5Al-5Mo-5V-3Cr-0. 5Fe β titanium alloy, ActaMaterialia 57 (7) (2009).

DOI: 10.1016/j.actamat.2009.01.007

Google Scholar

[15] Y. Ohmori, T. Ogo, K. Nakai, S. Kobayashi, Effects of ω-phase precipitation on β→α, α' transformations in a metastable β titanium alloy, Materials Science and Engineering: A 312 (1) (2001) 182-188. doi: 10. 1016/S0921-5093(00)01891-8.

DOI: 10.1016/s0921-5093(00)01891-8

Google Scholar

[16] S. Banerjee, U. M. Naik, Plastic instability in an omega forming Ti-15% Mo alloy, Acta Materialia 44 (9) (1996) 3667-3677. doi: 10. 1016/1359-6454(96)00012-2.

DOI: 10.1016/1359-6454(96)00012-2

Google Scholar

[17] S. Nag, R. Banerjee, H. L. Fraser, Microstructural evolution and strengthening mechanisms in Ti-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys, Materials Science and Engineering: C 25 (3) (2005).

DOI: 10.1016/j.msec.2004.12.013

Google Scholar

[18] J. Disegi, Implant Materials. Wrought Titanium -15% Molybdenum, Synthes, (2009).

Google Scholar

[19] M. Hájek, J. Veselý, M. Cieslar, Precision of electrical resistivity measurements, Materials Science and Engineering: A 462 (1-2) (2007) 339-342. doi: 10. 1016/j. msea. 2006. 01. 175.

DOI: 10.1016/j.msea.2006.01.175

Google Scholar

[20] T. Gloriant, G. Texier, F. Prima, D. Laillé, D. -M. Gordin, I. Thibon, D. Ansel, Synthesis and phase transformations of beta metastable ti-based alloys containing biocompatible Ta, Mo and Fe beta-stabilizer elements, Advanced Engineering Materials 8 (10) (2006).

DOI: 10.1002/adem.200600106

Google Scholar

[21] F. Prima, P. Vermaut, D. Ansel, J. Debuigne, ω precipitation in a beta metastable titanium al- loy, resistometric study, Materials Transactions, JIM 41 (8) (2000) 1092-1097. doi: 10. 2320/ matertrans1989. 41. 1092.

DOI: 10.2320/matertrans1989.41.1092

Google Scholar

[22] T. Gloriant, G. Texier, F. Sun, I. Thibon, F. Prima, J. Soubeyroux, Characterization of nanophase precipitation in a metastable β titanium-based alloy by electrical resistivity, dilatometry and neutron diffraction, Scripta Materialia 58 (4) (2008).

DOI: 10.1016/j.scriptamat.2007.10.007

Google Scholar

[23] P. Zháňal, P. Harcuba, J. Šmilauerová, J. Stráský, M. Janeček, B. Smola, M. Hájek, Phase transformations in Ti-15Mo investigated by in situ electrical resistance, Acta Physica Polonica A 128 (4) (2015) 779-783. doi: 10. 12693/APhysPolA. 128. 779.

DOI: 10.12693/aphyspola.128.779

Google Scholar

[24] D. Schryvers, L. Tanner, High resolution electron microscopy observations of athermal omega phase in Ti-Mo alloys, Materials Science Forum 56-58 (1990) 329-334. doi: 10. 4028/www. scientific. net/MSF. 56-58. 329.

DOI: 10.4028/www.scientific.net/msf.56-58.329

Google Scholar

[25] S. Yoshida, Y. Tsuya, The temperature dependence of the electrical resistivity of the βphase titanium-molybdenum alloys, J. Phys. Soc. Jpn. 11 (11) (1956) 1206-1207. doi: 10. 1143/ JPSJ. 11. 1206.

DOI: 10.1143/jpsj.11.1206

Google Scholar

[26] R. R. Hake D.H. Leslie, T.G. Berlincourt, Electrical resistivity, hall effect and superconductivity of some b. c. c. titanium-molybdenum alloys, Journal of Physics and Chemistry of Solids 20 (3) (1961) 177-186. doi: 10. 1016/0022-3697(61)90002-6.

DOI: 10.1016/0022-3697(61)90002-6

Google Scholar

[27] J. C. Ho, E.W. Collings, Anomalous electrical resistivity in titanium-molybdenum alloys, Physical Review B 6 (10) (1972) 3727.

DOI: 10.1103/physrevb.6.3727

Google Scholar

[28] P. L. Rossiter, The electrical resistivity of metals and alloys, Cambridge solid state science series, Cambridge University Press, (1987).

Google Scholar

[29] W. -F. Ho, A comparison of tensile properties and corrosion behavior of cast Ti-7. 5Mo with c. p. Ti, Ti-15Mo and Ti-6Al-4V alloys, Journal of Alloys and Compounds 464 (1-2) (2008) 580- 583. doi: 10. 1016/j. jallcom. 2007. 10. 054.

DOI: 10.1016/j.jallcom.2007.10.054

Google Scholar

[30] P. Zháňal, Study of Phase Transformations in Ti Alloys - Master Thesis, Charles University in Prague, (2014).

Google Scholar

[31] F. Sun, F. Prima, T. Gloriant, High-strength nanostructured ti-12mo alloy fromductilemetastable beta state precursor, Materials Science and Engineering: A 527 (16-17) (2010) 4262-4269. doi: 10. 1016/j. msea. 2010. 03. 044.

DOI: 10.1016/j.msea.2010.03.044

Google Scholar