[1]
C. Leyens,M. Peters (Eds. ), Titaniumand titaniumalloys: fundamentals and applications, WileyVCH; John Wiley, 2003. doi: 10. 1002/3527602119.
Google Scholar
[2]
G. Lütjering, J. C. Williams, Titanium, Engineering Materials, Processes, Springer Berlin Heidelberg, 2007. doi: 10. 1007/978-3-540-73036-1.
Google Scholar
[3]
P. D. Frost, W. M. Parris, L. L. Hirsch, J. R. Doig, C. M. Schwartz, Isothermal transformation of titanium-chromium alloys, Transactions of American Society for Metals 46 (1954) 231.
Google Scholar
[4]
B. S. Hickman, The formation of omega phase in titaniumand zirconiumalloys: a review, Journal of Materials Science 4 (6) (1969) 554-563.
Google Scholar
[5]
D. De Fontaine, Mechanical instabilities in the b. c. c. lattice and the beta to omega phase transformation, Acta Metallurgica 18 (2) (1970) 275-279. doi: 10. 1016/0001-6160(70)90035-0.
DOI: 10.1016/0001-6160(70)90035-0
Google Scholar
[6]
S. K. Sikka, Y. K. Vohra, R. Chidambaram, Omega phase in materials, Progress in Materials Science 27 (3) (1982) 245-310. doi: 10. 1016/0079-6425(82)90002-0.
DOI: 10.1016/0079-6425(82)90002-0
Google Scholar
[7]
S. Banerjee, P. Mukhopadhyay, Phase transformations: examples from titanium and zirconium alloys, no. 12 in Pergamon materials series, Elsevier/Pergamon, (2007).
DOI: 10.1016/s1470-1804(07)80053-8
Google Scholar
[8]
A. Devaraj, S. Nag, R. Srinivasan, R. Williams, S. Banerjee, R. Banerjee, H. Fraser, Experimental evidence of concurrent compositional and structural instabilities leading to ω precipitation in titanium-molybdenum alloys, Acta Materialia 60 (2) (2012).
DOI: 10.1016/j.actamat.2011.10.008
Google Scholar
[9]
A.W. Bowen, Omega phase embrittlement in aged Ti-15% Mo, ScriptaMetallurgica 5 (8) (1971) 709-715. doi: 10. 1016/0036-9748(71)90258-4.
DOI: 10.1016/0036-9748(71)90258-4
Google Scholar
[10]
D. De Fontaine, N. E. Paton, J. C. Williams, The omega phase transformation in titanium alloys as an example of displacement controlled reactions, ActaMetallurgica 19 (11) (1971) 1153-1162. doi: 10. 1016/0001-6160(71)90047-2.
DOI: 10.1016/0001-6160(71)90047-2
Google Scholar
[11]
J. Šmilauerová, P. Harcuba, J. Pospíšil, Z. Matěj, V. Holý, Growth of ω inclusions in Ti alloys: An X-ray diffraction study, ActaMaterialia 61 (17) (2013) 6635-6645. doi: 10. 1016/j. actamat. 2013. 07. 059.
DOI: 10.1016/j.actamat.2013.07.059
Google Scholar
[12]
T.W. Duerig, G. T. Terlinde, J. C. Williams, The ωphase reaction in titaniumalloy, in: H. Kimura, O. Izumi (Eds. ), Proceedings of the 4th Int'l Conference on Titanium, Vol. 2, Titanium'80 Science and Technology, 1980, pp.1299-1308.
Google Scholar
[13]
J. C. Williams, M. J. Blackburn, The influence of misfit on the morphology and stability of the omega phase in titanium-transitionmetal alloys., Trans. Met. Soc. AIME 245 (1969) 2352-2355.
Google Scholar
[14]
S. Nag, R. Banerjee, R. Srinivasan, J. Y. Hwang, M. Harper, H. L. Fraser, ω-assisted nucleation and growth of α precipitates in the Ti-5Al-5Mo-5V-3Cr-0. 5Fe β titanium alloy, ActaMaterialia 57 (7) (2009).
DOI: 10.1016/j.actamat.2009.01.007
Google Scholar
[15]
Y. Ohmori, T. Ogo, K. Nakai, S. Kobayashi, Effects of ω-phase precipitation on β→α, α' transformations in a metastable β titanium alloy, Materials Science and Engineering: A 312 (1) (2001) 182-188. doi: 10. 1016/S0921-5093(00)01891-8.
DOI: 10.1016/s0921-5093(00)01891-8
Google Scholar
[16]
S. Banerjee, U. M. Naik, Plastic instability in an omega forming Ti-15% Mo alloy, Acta Materialia 44 (9) (1996) 3667-3677. doi: 10. 1016/1359-6454(96)00012-2.
DOI: 10.1016/1359-6454(96)00012-2
Google Scholar
[17]
S. Nag, R. Banerjee, H. L. Fraser, Microstructural evolution and strengthening mechanisms in Ti-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys, Materials Science and Engineering: C 25 (3) (2005).
DOI: 10.1016/j.msec.2004.12.013
Google Scholar
[18]
J. Disegi, Implant Materials. Wrought Titanium -15% Molybdenum, Synthes, (2009).
Google Scholar
[19]
M. Hájek, J. Veselý, M. Cieslar, Precision of electrical resistivity measurements, Materials Science and Engineering: A 462 (1-2) (2007) 339-342. doi: 10. 1016/j. msea. 2006. 01. 175.
DOI: 10.1016/j.msea.2006.01.175
Google Scholar
[20]
T. Gloriant, G. Texier, F. Prima, D. Laillé, D. -M. Gordin, I. Thibon, D. Ansel, Synthesis and phase transformations of beta metastable ti-based alloys containing biocompatible Ta, Mo and Fe beta-stabilizer elements, Advanced Engineering Materials 8 (10) (2006).
DOI: 10.1002/adem.200600106
Google Scholar
[21]
F. Prima, P. Vermaut, D. Ansel, J. Debuigne, ω precipitation in a beta metastable titanium al- loy, resistometric study, Materials Transactions, JIM 41 (8) (2000) 1092-1097. doi: 10. 2320/ matertrans1989. 41. 1092.
DOI: 10.2320/matertrans1989.41.1092
Google Scholar
[22]
T. Gloriant, G. Texier, F. Sun, I. Thibon, F. Prima, J. Soubeyroux, Characterization of nanophase precipitation in a metastable β titanium-based alloy by electrical resistivity, dilatometry and neutron diffraction, Scripta Materialia 58 (4) (2008).
DOI: 10.1016/j.scriptamat.2007.10.007
Google Scholar
[23]
P. Zháňal, P. Harcuba, J. Šmilauerová, J. Stráský, M. Janeček, B. Smola, M. Hájek, Phase transformations in Ti-15Mo investigated by in situ electrical resistance, Acta Physica Polonica A 128 (4) (2015) 779-783. doi: 10. 12693/APhysPolA. 128. 779.
DOI: 10.12693/aphyspola.128.779
Google Scholar
[24]
D. Schryvers, L. Tanner, High resolution electron microscopy observations of athermal omega phase in Ti-Mo alloys, Materials Science Forum 56-58 (1990) 329-334. doi: 10. 4028/www. scientific. net/MSF. 56-58. 329.
DOI: 10.4028/www.scientific.net/msf.56-58.329
Google Scholar
[25]
S. Yoshida, Y. Tsuya, The temperature dependence of the electrical resistivity of the βphase titanium-molybdenum alloys, J. Phys. Soc. Jpn. 11 (11) (1956) 1206-1207. doi: 10. 1143/ JPSJ. 11. 1206.
DOI: 10.1143/jpsj.11.1206
Google Scholar
[26]
R. R. Hake D.H. Leslie, T.G. Berlincourt, Electrical resistivity, hall effect and superconductivity of some b. c. c. titanium-molybdenum alloys, Journal of Physics and Chemistry of Solids 20 (3) (1961) 177-186. doi: 10. 1016/0022-3697(61)90002-6.
DOI: 10.1016/0022-3697(61)90002-6
Google Scholar
[27]
J. C. Ho, E.W. Collings, Anomalous electrical resistivity in titanium-molybdenum alloys, Physical Review B 6 (10) (1972) 3727.
DOI: 10.1103/physrevb.6.3727
Google Scholar
[28]
P. L. Rossiter, The electrical resistivity of metals and alloys, Cambridge solid state science series, Cambridge University Press, (1987).
Google Scholar
[29]
W. -F. Ho, A comparison of tensile properties and corrosion behavior of cast Ti-7. 5Mo with c. p. Ti, Ti-15Mo and Ti-6Al-4V alloys, Journal of Alloys and Compounds 464 (1-2) (2008) 580- 583. doi: 10. 1016/j. jallcom. 2007. 10. 054.
DOI: 10.1016/j.jallcom.2007.10.054
Google Scholar
[30]
P. Zháňal, Study of Phase Transformations in Ti Alloys - Master Thesis, Charles University in Prague, (2014).
Google Scholar
[31]
F. Sun, F. Prima, T. Gloriant, High-strength nanostructured ti-12mo alloy fromductilemetastable beta state precursor, Materials Science and Engineering: A 527 (16-17) (2010) 4262-4269. doi: 10. 1016/j. msea. 2010. 03. 044.
DOI: 10.1016/j.msea.2010.03.044
Google Scholar