Symmetric Electrodes for Solid Fuel Cells Based on Sr-Doped LaFe0.7Ni0.3O3-δ

Article Preview

Abstract:

Perovskite La1-xSrxFe0.7Ni0.3O3-δ with x = 0.0, 0.1 &0.2 denoted LSFNx has been investigated as potential symmetrical electrode in solid fuel cells (SOFCs). The crystal structure is in pure orthorhombic phase for x = 0.0, orthorhombic-cubic phase coexist for x = 0.1 and pure cubic phase for x = 0.2. Structural properties are studied by X-ray powder diffraction (XRPD), refined by Rietveld analysis. SEM images show the morphology of as prepared and calcined samples either the compatibility between those electrodes and LSGM electrolyte in presence of 50% wt of Ce0.8Gd0.2O2-δ, so that, lower chemical reactivity was found. Total conductivity, impedance in high, medium and low frequencies HF, MF and LF respectively, and resistance polarization (Rp) are determined in air. LaFe0.7Ni0.3O3-δ has a good response in all ranges of frequencies but La0.9Sr0.1Fe0.7Ni0.3O3-δ and La0.8Sr0.2Fe0.7Ni0.3O3-δ have response only in HF and MF and exhibit Rp values as low as LaFe0.7Ni0.3O3-δ .

You might also be interested in these eBooks

Info:

Periodical:

Pages:

24-31

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Vibhu, A. Rougier, C. Nicollet, A. Flura, J. C. Grenier, J. M. Bassat, Solid State Ionics 278 (2015)‏ 32–37.

DOI: 10.1016/j.ssi.2015.05.005

Google Scholar

[2] L. dos Santos- Gomez, L. Léon- Reina, J. M. Porras- Vazquez, E.R. Lossila, D. Marrero-Lopez, Solid‏ State Ionics 239(2013) 1-7.

Google Scholar

[3] R. Mark Ormerod, Chem. Soc. Rev. 32 (2003) 17–28.

Google Scholar

[4] Q. Liu, X. Dong, G. Xiao, F. Zhao, Adv. Mater. 22 (2010) 5478- 5482.

Google Scholar

[5] J. C. Ruiz-Morales, J. Canales-Vázquez, H. Lincke, J. Peña-Martínez, D. ‏ Marrero-López, D. Pérez‏ Coll, J.T.S. Irvine & P. Núñez, Bol. Soc. Esp. Ceram. V., 47, 4 (2008) 183-188.

DOI: 10.3989/cyv.2008.v47.i4.172

Google Scholar

[6] Y. Zheng, C. Zhang, R. Ran, R. Cai, Z. Shao, D. Farrusseng, Acta Materialia 57 (2009) 1165–1175.

Google Scholar

[7] J. Canales-Vazquez, J. Carlos Ruiz-Morales, D. Marrero-Lopez, J. Pena‏ Martınez, P. Nunez, P. Gomez-‏ Romero, Journal of Power Sources 171 (2007) 552–557.

Google Scholar

[8] L. dos Santos-Gomez, J.M. Compana , S. Bruque , E.R. Losilla, D. Marrero-Lopez, Journal of Power Sources 279 (2015) 419- 427.

DOI: 10.1016/j.jpowsour.2015.01.043

Google Scholar

[9] R. Chiba, F. Yoshimura, Y. Sakurai, Solid State Ionics (1999) 124-281.

Google Scholar

[10] R. Chiba, F. Yoshimura, Y. Sakurai, US6120924, (2000).

Google Scholar

[11] H. Orui, K. Watanabe, R. Chiba, M. Arakawa, J. Electrochem. Soc. 151 (2004) A1412-A1417.

Google Scholar

[12] H. Arai, R. Chiba, T. Komatsu, H. Orui, S. Sugita, Y. Tabata, K. Nozawa, K. Watanabe, M. Arakawa, ‏ K. Sato, J. Fuel Cell Sci. Technol. 5 (2008) ‏2031‏-(2041).

DOI: 10.1115/1.2927765

Google Scholar

[13] X. D. ‏ Zhou, J. B. ‏ Yang, E. C. Thomsen, Q. Cai, B. J. Scarfino, Z. Nie, G. W. Coffey, W. J. ‏ James, W. B. Yelon, H. U. Anderson, L. R. Pederson, J. Electrochem. Soc. (2006) 153.

DOI: 10.1149/1.2358840

Google Scholar

[14] M. Bevilacqua, T. Montini, C. Tavagnacco, G. Vicario, P. Fornasiero, M. Graziani, Solid State ‏ Ionics, 177(2006) 2957.

DOI: 10.1016/j.ssi.2006.08.018

Google Scholar

[15] M. Bevilacqua, T. Montini, C. Tavagnacco, E. Fonda, P. Fornasiero, M. Graziani, Chem. Mater. 19‏ (2007) 5926.

Google Scholar

[16] E. Konysheva, J. T. S. Invine, J. Power Sources 2009, in press.

Google Scholar

[17] S. Rapagnà, H. Provendier, C. Petit, A. Kiennemann, P.U. Foscolo, Biomass & Bioenergy, 22(2002)‏ 377.

DOI: 10.1016/s0961-9534(02)00011-9

Google Scholar

[18] J. Guo, H. Lou, H. Zhu, X. Zheng, Materials Letters, 57 (2003) 4450.

Google Scholar

[19] R. Kumar, R. J. Choudhary, M. Wasi Khan , J. P. Srivastava, C. W. Bao, H. M. Tsai, J.W. Chiou, K. ‏ Asokan, & W. F. Pong, Journal Of Applied Physics, 97 (2005) 093526.

DOI: 10.1063/1.1884754

Google Scholar

[20] T. Montini, M. Bevilacqua, E. Fonda, M. F. Casula, S. Lee, C. Tavagnacco, R. J. Gorte & P. ‏ Fornasiero, Chem. Mater. 21 (2009) 1768–1774.

DOI: 10.1021/cm900467c

Google Scholar

[21] A.C. Larson, R.B. von Dreele, GSAS Program, Los Alamos National Lab, 1994. Rep. No. LA-UR-‏ 86748.

Google Scholar

[22] Inorganic Crystal Structure Database ICSD, 2014 v2014e01.

Google Scholar

[23] X'Pert HighScore Plus Program, Version 3. 0e, PANalytical B. V, Amelo, The‏ Netherlands, (2012).

Google Scholar

[24] D. Marrero-Lopez, J. Pena-Martínez, J.C. Ruíz-Morales, M.C. Martín-Sedeno, J.R. Ramos-Barrado, J. Am. Ceram. Soc. 94 (4) (2011) 1031‏-1039.

Google Scholar

[25] D. Johnson, ZView: Asoftware Program for IES Analysis, Version 2. 8, Scribner Associates, Inc., ‏ Southern Pines, NC, (2002).

Google Scholar