Fractograpic Observations and Effect of Stress Ratio on Fatigue Striations Spacing in Aluminium Alloy 2024 T351

Article Preview

Abstract:

In this paper, effect of stress ratio was investigated on macro and micro of fatigue crack growth rates (FCGRs) of Al-alloy 2024 T351. Microscopic fatigue crack growth rate present a change of slope with respect to the macroscopic fatigue crack growth rate. In addition, an increasing in stress ratio increases the fatigue life. Fractographic examination showed the presence of striations in Paris domain and secondary cracks at grain boundaries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.C. Paris, M.P. Gomez and W.P. Anderson: The Trend Eng Vol. 13 (1961), p.9.

Google Scholar

[2] R. Jones, L. Molent, S. Pitt and E. Siores: In ECF16 Proc. Edited by Gdoutos, July 3-7 (2006).

Google Scholar

[3] R.G. Forman, V.E. Kearney and R.M. Engle, J. of Basic Engineering Vol. 89 (1967), p.459.

Google Scholar

[4] E.K. Walker, ASTM STP 462. Philadelphia: ASTM (1970), p.1.

Google Scholar

[5] W. Elber, Eng. Fract. Mech. Vol. 2 (1970), p.37.

Google Scholar

[6] W. Guo, C.H. Wang, and L.R. Frose, Fat. Fract. Eng. Mat. Struct. Vol. 22 (1999), p.437.

Google Scholar

[7] AL. TH. Kermanidis and SP. Pantelakis, Fat. Fract. Eng. Mat. Struct. Vol. 24 (2001), p.679.

Google Scholar

[8] R. Stofanak, R. Hertzberg, G. Miller, R. Jaccard, K. Donald, Eng. Fract. Mech. Vol. 17 (1983).

Google Scholar

[9] J. Petit: Theoretical concepts and numerical analysis of fatigue (Birmingham 1992).

Google Scholar

[10] E.U. Lee, G. Glinka, A. Vasudevan, N. Iyyer N. Phan, Int. J. Fatigue Vol. 31(2009), p.1858.

Google Scholar

[11] C. Laird, ASTM STP 415, Philaaelphia, 1967, p.131.

Google Scholar

[12] H. Mughrabi, R. Prass, H.J. Christ and D. Puppel, Chemistry and Physics of Fracture, p.443.

Google Scholar

[13] C. Masuda, A. Ohta, S. Nishijima and E. Savak: J. Mat. Science Vol. 15 (1980), p.1663.

Google Scholar

[14] R. Sunder and P. K. Dash: Int. J. Fatigue Vol. 4(2) (1982), p.97.

Google Scholar

[15] Y. Uchida, M. Shimojo and Y. Higo: J. Mat. Science Vol. 34 (1999), p.2411.

Google Scholar

[16] J. Siegl, J. Schijve and U.H. Padmadinata: Int. J. Fatigue Vol. 13(2) (1991), p.139.

Google Scholar

[17] Katsuaki Furukawa: Mat. Scie. Eng A Vol. 285(2000), p.80.

Google Scholar

[18] A.A. Shanyavskiy, L.M. Burchenkov: Int. J. Fatigue Vol. 50 (2013), p.47.

Google Scholar

[19] M. Benachour, A. Hadjoui, M. Benguediab, N. Benachour: Proc. Eng. Vol. 2 (2010), p.121.

Google Scholar

[20] H. Tada, P. Paris: The stress analysis of cracks handbooks. Del Research Corporation, (1973).

Google Scholar

[21] A.J. McEvily, H. Matsunaga: Transaction B-Mechanical Engineering Vol. 17(1) (2010), p.75.

Google Scholar