Ultrasonic-Assisted Milling of Hard-to-Cut Materials: Development and a Framework for Further Investigations

Article Preview

Abstract:

Ultrasonic-Assisted Milling (UAM) combines the material removal mechanism of grinding and the milling kinematics with ultrasonic assistance. The process is suitable for hard-to-cut materials used in many industrial applications. UAM is a novel process, still under investigation to clarify the product accuracy and the process performance. This paper presents a literature review covering the development of the experimental work related to UAM. A summary of key research problems is concluded and a systematic study using the design of experiments is suggested in order to investigate the effects of the main process parameters on its performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-54

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Feucht, J. Ketelaer, A. Wolff, M. Mori, and M. Fujishima, Latest Machining Technologies of Hard-to-Cut Materials by Ultrasonic Machine Tool, ‎6th CIRP Int. Conf. High Perform. Cut., Vol. 14 (2014), pp.148-152.

DOI: 10.1016/j.procir.2014.03.040

Google Scholar

[2] F. Klocke, S. L. Soo, B. Karpuschewski, J. a. Webster, D. Novovic, A. Elfizy, D. a. Axinte, and S. Tönissen, Abrasive Machining of Advanced Aerospace Alloys and Composites, CIRP Ann. - Manuf. Technol., Vol. 64, Issue 2 (2015), pp.581-604.

DOI: 10.1016/j.cirp.2015.05.004

Google Scholar

[3] E. Kuljanic, M. Sortino, and G. Totis, Machinability of Difficult Machining Materials, Trends Dev. Mach. Assoc. Technol., (2010), pp.11-18.

Google Scholar

[4] M. N. Kumar, S. K. Subbu, P. V. Krishna, and A. Venugopal, Vibration Assisted Conventional and Advanced Machining : A Review, Procedia Eng. Glob. Congr. Manuf. Manag. GCMM, Vol. 97 (2014), pp.1577-1586.

DOI: 10.1016/j.proeng.2014.12.441

Google Scholar

[5] K. L. Kuo, Experimental Investigation of Brittle Material Milling Using Rotary Ultrasonic Machining, Proc. 35th MATADOR Conf., No. 2 (2007), pp.195-198.

DOI: 10.1007/978-1-84628-988-0_43

Google Scholar

[6] K. Ding, Y. Fu, H. Su, X. Gong, and K. Wu, Wear of Diamond Grinding Wheel in Ultrasonic Vibration-Assisted Grinding of Silicon Carbide, Int. J. Adv. Manuf. Technol., Vol. 71, No. 9-12 (2014), p.1929-(1938).

DOI: 10.1007/s00170-014-5625-x

Google Scholar

[7] B. Lauwers, F. Bleicher, and P. T. E. N. Haaf, Investigation of the Process-Material Interaction in Ultrasonic Assisted Grinding of ZrO2 based Ceramic Materials, Proc. 4th CIRP Int. Conf. High Perform. Cut., (2010).

Google Scholar

[8] D. Lv, H. Wang, Y. Tang, Y. Huang, and Z. Li, Influences of Vibration on Surface Formation in Rotary Ultrasonic Machining of Glass BK7, Precis. Eng., Vol. 37, No. 4 (2013), pp.839-848.

DOI: 10.1016/j.precisioneng.2013.04.003

Google Scholar

[9] O. Dambon, F. Klocke, M. Heselhaus, B. Bulla, A. Weber, R. Schug, and B. Bresseler, Vibration-Assisted Machining Research at Fraunhofer IPT – Diamond Turning and Precision Grinding, Am. Soc. Precis. Eng., (2007), pp.3-10.

Google Scholar

[10] K. L. Kuo and C. C. Tsao, Rotary Ultrasonic-Assisted Milling of Brittle Materials, Trans. Nonferrous Met. Soc. China, English Ed., Vol. 22, No. Suppl. 3 (2012), pp.793-800.

DOI: 10.1016/s1003-6326(12)61806-8

Google Scholar

[11] C. Zhang, J. Zhang, and P. Feng, Mathematical Model for Cutting Force in Rotary Ultrasonic Face Milling of Brittle Materials, Int. J. Adv. Manuf. Technol., Vol. 69, No. 1-4 (2013), pp.161-170.

DOI: 10.1007/s00170-013-5004-z

Google Scholar

[12] Z. Jian-Hua, Z. Yan, T. Fu-Qiang, Z. Shuo, and G. Lan-Shen, Kinematics and Experimental Study on Ultrasonic Vibration-Assisted Micro End Grinding of Silica Glass, Int. J. Adv. Manuf. Technol., (2015).

DOI: 10.1007/s00170-014-6761-z

Google Scholar

[13] B. Lauwers, D. Plakhotnik, M. Vanparys, and W. Liu, Tool Path Generation Functionality and Ultrasonic Assisted Machining of Ceramic Components using Multi-axis Machine Tools, Proc. MTTRF, (2008).

Google Scholar

[14] X. Xiao, K. Zheng, and W. Liao, Theoretical Model for Cutting Force in Rotary Ultrasonic Milling of Dental Zirconia Ceramics, Int. J. Adv. Manuf. Technol., Vol. 75, No. 9-12 (2014), pp.1263-1277.

DOI: 10.1007/s00170-014-6216-6

Google Scholar

[15] E. Uhlmann and C. Hübert, Ultrasonic Assisted Grinding of Advanced Ceramics, Am. Soc. Precis. Eng. -ASPE, (2007), pp.43-47.

Google Scholar

[16] W. Cong, X. Zou, N. Wu, X. Wang, and Z. Pei, Rotary Ultrasonic Machining of Carbon Fiber Reinforced Plastic Composites: An Experimental Study on Cutting Temperature, J. Reinf. Plast. Compos., Vol. 31, No. 22 (2012), pp.1516-1525.

DOI: 10.1177/0731684412464913

Google Scholar

[17] C. Zhang, S. Yuan, and J. Hu, Effects of Cutting Parameters on Ductile Material Removal Mode Percentage in Rotary Ultrasonic Face Machining, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., No. 37, (2014).

DOI: 10.1177/0954405414548497

Google Scholar

[18] Y. Liu, H. Zhao, J. Jing, and S. Wei, Investigation on the Bonding Strength Patterns of Ultrasonic Vibration Tools and Influence on Working Performance during Rotary Ultrasonic Grinding, Int. J. Adv. Manuf. Technol., Vol. 65, No. 1-4 (2013).

DOI: 10.1007/s00170-012-4192-2

Google Scholar

[19] E. Uhlmann and C. Sammler, Influence of Coolant Conditions in Ultrasonic Assisted Grinding of High Performance Ceramics, Prod. Eng., Vol. 4, No. 6 (2010), pp.581-587.

DOI: 10.1007/s11740-010-0265-y

Google Scholar

[20] W. Cong, Q. Feng, Z. Pei, T. Deines, and C. Treadwell, Rotary Ultrasonic Machining of Carbon Fiber-Reinforced Plastic Composites: Using Cutting Fluid vs. Cold Air as Coolant, J. Compos. Mater., Vol. 46, No. 14 (2012), pp.1745-1753.

DOI: 10.1177/0021998311424625

Google Scholar

[21] D. M. G. Na Qina, and Z. J. Peia, Ultrasonic Vibration Assisted Grinding of Titanium: Cutting Force Modeling with Design Of Experiments, Proc. ASME Int. Manuf. Sci. Eng. Conf., Vol. 2 (2009), pp.619-624.

Google Scholar

[22] J. P. Davim, Design of Experiments in Production Engineering, Springer Int. Publ. Switz., ISBN 978-3-319-23838-8, (2016).

Google Scholar