[1]
C.W. Kim, D.S. Kim, S.Y. Kang, M. Marquez, Y.L. Joo, Structural studies of electrospun cellulose nanofibers, Polymer, 47(14) (2006) 5097-5107.
DOI: 10.1016/j.polymer.2006.05.033
Google Scholar
[2]
S.J. Eichhorn, A. Dufresne, M. Aranguren, N.E. Marcovich, J.R. Capadona, S.J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, and W. Gindl, Review: current international research into cellulose nanofibres and nanocomposites, J. Mater. Sci. 45(1) (2010).
DOI: 10.1007/s10853-009-3874-0
Google Scholar
[3]
G. Siqueira, J. Bras, A. Dufresne, Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites, Biomacromolecules, 10(2) (2008).
DOI: 10.1021/bm801193d
Google Scholar
[4]
G.S. Brady. Materials Handbook, McGraw-Hill Book Co., New York, 1971 Comment: p.169.
Google Scholar
[5]
J.E. Atchison, Agricultural residues and other nonwood plant fibers, Science 191 (1976) 768–772.
DOI: 10.1126/science.191.4228.768
Google Scholar
[6]
B. Nasri-Nasrabadi, T. Behzad, R. Bagheri, Preparation and characterization of cellulose nanofiber reinforced thermoplastic starch composites, Fibers Polym. 15 (2014) 347–354.
DOI: 10.1007/s12221-014-0347-0
Google Scholar
[7]
J. Gressel, A. Zilberstein, Let them eat (GM) straw. Trends Biotechnol. 21(12) (2003) 525- 529.
DOI: 10.1016/j.tibtech.2003.10.007
Google Scholar
[8]
H.K. Kang, N.M. Kim, G.J. Kim, E.S. Seo, H.J. Ryu, S.I. Yun, H.C. Choi, D.F. Day, J. Kim, D.L. Cho, D. Kim , Enhanced saccharification of rice straw using hypochlorite-hydrogen peroxide, Biotechnology and Bioprocess Engineering 16(2) (2011).
DOI: 10.1007/s12257-010-0262-1
Google Scholar
[9]
N.A.M.Z. Abidin, N. Azraaie, N.A. Ibrahim, N.A. M. Razali, F.A. Aziz, S. Radiman, Study of XRD and FESEM characterization of cellulose from hardwood waste of resak (Vatica spp. ), In Advanced Materials Research 1087 (2015) 40-44.
DOI: 10.4028/www.scientific.net/amr.1087.40
Google Scholar
[10]
N.B. Azraaie, F.A. Aziz, R. Shahidan, Preparation of cellulose microfibrils from banana (musa acuminata) pseudo-stem waste, In Advanced Materials Research 620 (2013) 299-303.
DOI: 10.4028/www.scientific.net/amr.620.299
Google Scholar
[11]
N.A. Ibrahim, N. Azraaie, N.A.M.Z. Abidin, N.A.M. Razali, F.A. Aziz, S. Zakaria, XRD and FTIR studies of natural cellulose isolated from pineapple (Ananas comosus) leaf fibres. In Advanced Materials Research 1087 (2015) 197-201.
DOI: 10.4028/www.scientific.net/amr.1087.197
Google Scholar
[12]
N. Reddy, Y. Yang, Properties of high-quality long natural cellulose fibers from rice straw, J. Agr. Food Chem. 54(21) (2006) 8077-8081.
DOI: 10.1021/jf0617723
Google Scholar
[13]
N. Reddy, Y. Yang, Biofibers from agricultural by products for industrial applications, Trends in Biotechnology, 23(1) (2005) 22-27.
DOI: 10.1016/j.tibtech.2004.11.002
Google Scholar
[14]
G.I. Mantanis, R.A. Young, R.M. Rowell, Swelling of compressed cellulose fiber webs in organic liquids, Cellulose 2(1) (1995). 1-22.
Google Scholar
[15]
L.A. Ribas Batalha, J.L. Colodette, J.L. Gomide, L.C. Barbosa, C.R. Maltha, F.J. Borges Gomes, Dissolving pulp production from bamboo, Bioresources Journal, 7(1) (2012) 640-651.
DOI: 10.15376/biores.7.1.640-651
Google Scholar
[16]
J.C. Robert, Paper Chemistry, Blackie Academic and Profesional, McGrawHill, Glasgow, (1991).
Google Scholar
[17]
H.V. Lee, S.B.A. Hamid, S.K. Zain, Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process, Scientific World Journal, 2014 (2014) 1-20.
DOI: 10.1155/2014/631013
Google Scholar