Crystal Structure of TiO2 Nanotube Arrays Anodized at Different Voltage for Cell-Metal Interaction

Article Preview

Abstract:

In recent study, vertically aligned TiO2 nanotubes have become the primary candidates that can provide direct control of many type cell behaviors and its functionality. TiO2 nanotubes were successfully developed within 10 V to 40 V of applied potential. The intensity of peaks (101) increases with increasing voltage up to 40 V, indicating an improvement in degree of crystalinity. The average crystallite size of the samples anodized at 10 V is about 19.65 nm and increase to 30.88 nm at 40 V. PA6 cell interaction were high on 40 V sample (110 nm-diameter) TiO2 nanotubes . It was found that anatase phase with appropriate diameter are believed to affect the growth of cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

262-266

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.H. Park, I.S. Park, K.S. Kim, W.Y. Jeon, B.K. Park, H.S. Kim, T.S. Bae, M.H. Lee, Bioactive and electrochemical characterization of TiO2 nanotubes on titanium via anodic oxidation, Electrochim. Acta, 55 (2010) 6109-6114.

DOI: 10.1016/j.electacta.2010.05.082

Google Scholar

[2] V. Vega, M.A. Cerdeira, V.M. Prida, D. Alberts, N. Bordel, R. Pereiro, F. Mera, S. García, M. Hernández-Vélez, M. Vásquez, Electrolyte influence on the anodic synthesis of TiO2 nanotube arrays, J. Non-Cryst. Solids, 354 (2008) 5233-5235.

DOI: 10.1016/j.jnoncrysol.2008.05.073

Google Scholar

[3] J.H. Lee, H.E. Kim, Y.H. Koh, Highly porous titanium (Ti) scaffolds with bioactive microporous hydroxyapatite/TiO2 hybrid coating layer, Mater. Lett. 63 (2009) 1995-(1998).

DOI: 10.1016/j.matlet.2009.06.023

Google Scholar

[4] M.Y. Lan, S.L. Lee, H.H. Huang, P.F. Chen, C.P. Liu, S.W. Lee, Diameter selective behavior of human nasal epithelial cell on Ag-coated TiO2 nanotubes, Ceram. Int. 40 (2014) 4745-4751.

DOI: 10.1016/j.ceramint.2013.09.018

Google Scholar

[5] T.H. Koo, J.S. Borah, Z.C. Xing, S.M. Moon, Y. Jeong, I.K. Kang, Immobilization of pamidronic acids on the nanotube surface of titanium discs and their interaction with bone cells, Nanoscale Res. Lett. 124 (2013) 1-9.

DOI: 10.1186/1556-276x-8-124

Google Scholar

[6] W. Wang, L. Zhao, K. Wu, Q. Ma, S. Mei, P.K. Chu, Q. Wang, Y. Zhang, The role of integrin-linked kinase/β-catenin pathway in the enhanced MG63 differentiation by micro/nano-textured topography, Biomat. 34 (2013) 631-640.

DOI: 10.1016/j.biomaterials.2012.10.021

Google Scholar

[7] B. Choudhury, M. Dey, A. Choudhury, Defect generation, d-d transition, and band gap reduction in Cu-doped TiO2 nanoparticles, Int. Nano Lett. 25 (2013) 1-8.

DOI: 10.1186/2228-5326-3-25

Google Scholar

[8] P. Górska, A. Zaleska, E. Kowalska, T. Klimczuk, J.W. Sobczak, E. Skwarek, W. Janusz, J. Hupka, TiO2 photoactivity in vis and UV light: The influence of calcination temperature and surface properties, Appl. Catal., B Environ. 84 (2008) 440-447.

DOI: 10.1016/j.apcatb.2008.04.028

Google Scholar

[9] Y. Lai, H. Zhuang, L. Sun, Z. Chen, C. Lin, Self-organized TiO2 nanotubes in mixed organic–inorganic electrolytes and their photoelectrochemical performance, Electrochim. Acta, 54 (2009) 6536-6542.

DOI: 10.1016/j.electacta.2009.06.029

Google Scholar

[10] H. Habazaki, K. Shimizu, S. Nagata, P. Skeldon, G.E. Thompson, Fast migration of fluoride ions in growing anodic titanium oxide, Electrochem. Commun. 9 (5) (2007) 1222-1227.

DOI: 10.1016/j.elecom.2006.12.023

Google Scholar

[11] S. Nakashima, H. Fujisawa, M. Shimizu, O. Sakata, T. Yamada, H. Funakubo, J.M. Park, T. Kanashima, M. Okuyama, X-ray diffraction study of electric-field-induced strains in polycrystalline BiFeO3 thin films at low temperatures by using synchrotron radiation, J. Korean Phys. Soc. 59 (2011).

DOI: 10.3938/jkps.59.2556

Google Scholar

[12] S.H. An, R. Narayanan, T. Matsumoto, H.J. Lee, T.Y. Kwon, K.H. Kim, Crystallinity of anodic TiO2 nanotubes and bioactivity, J. Nanosci. Nanotechnol. 11 (2011) 4910-4919.

DOI: 10.1166/jnn.2011.4114

Google Scholar

[13] L.M. Chamberlain, K.S. Brammer, G.W. Johnston, S. Chien, S. Jin, Macrophage inflammatory response to TiO2 nanotube surfaces, J. Biomater. Nanobiotechnol. 2 (2011) 293-300.

Google Scholar

[14] W.Q. Yu, X.Q. Jiang, F.Q. Zhang, L. Xu, The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation, J. Biomed. Mater. Res. A. 94A(4) (2010) 1012-1022.

DOI: 10.1002/jbm.a.32687

Google Scholar