Development of New Composition of Bioactive Glass Powder from SiO2-CaO-Na2O-P2O5 System through Melt-Derived Route

Article Preview

Abstract:

In this studies, melt-derived route was employed to fabricate new composition of bioactive glass (BG) from SiO2-CaO-Na2O-P2O5 system. Amorphous glass structure is confirmed through X-ray diffraction (XRD). Fourier transform infrared spectroscope (FTIR) confirmed the formation of silica network with the existence of functional groups Si-O-Si (bend), Si-O-Si (tetrahedral) and Si-O-Si (stretch) for all glass composition. The bioactivity of all BG is verified by incubation in Hank’s Balanced Salt Solution (HBSS) for 1h and 24h. Based on XRD pattern, it is confirmed that all glass composition remained in amorphous structure even after 24h of immersion with weak characteristic of carbonate group (C-O) and P-O band detected in FTIR analysis on carbonated hyrdoxyapatite (CHA) formation. Therefore, the objective to develop new composition of BG is achiveable despite the lack of CHA formation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

267-272

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.N.D. Aza, A.H.D. Aza, P. Pena, S.D. Aza, Bioactive glasses and glass-ceramics, Bol. Soc. Esp. Ceram. 46(2) (2007) 45-55.

DOI: 10.3989/cyv.2007.v46.i2.249

Google Scholar

[2] C. Tirapelli, H. Panzeri, E.H.G. Lara, R.G. Soares, O. Peitl, E.D. Zanotto, The effect of a novel crystallised bioactive glass-ceramic powder on dentine hypersensitivity: a long-term clinical study, Journal of Oral Rehabilitation. 38(4) (2011).

DOI: 10.1111/j.1365-2842.2010.02157.x

Google Scholar

[3] S.A. Kumar, R. Pyare, Characterization of ZnO substituted 45S5 bioactive glasses and glass – ceramics, Journal of Materials Science Research. 1(2) (2012) 207-220.

DOI: 10.5539/jmsr.v1n2p207

Google Scholar

[4] A.R. Boccaccini ,  M. Erol, W.J. Stark, D. Mohnc, Z. Hong, J.F. Mano, Polymer/bioactive glass nanocomposites for biomedical applications: A review, Composites Science and Technology. 70(13) (2010) 1764-1776.

DOI: 10.1016/j.compscitech.2010.06.002

Google Scholar

[5] F.Z. Mezahi, A.L. Girot, H. Oudadesse, A. Harabi, Reactivity kinetics of 52S4 glass in the quaternary system SiO2–CaO–Na2O–P2O5: Influence of the synthesis process: Melting versus sol–gel, J. Non-Cryst. Solids. 361(1) (2013) 111-118.

DOI: 10.1016/j.jnoncrysol.2012.10.013

Google Scholar

[6] I. Farooq, Z. Imran, U. Farooq, A. Leghari, H. Ali, Bioactive Glass: A Material for the Future. World J Dent, 3(2) (2012) 199-201.

Google Scholar

[7] H.F. Yin, W. u. Chun, L.H. Mei, L.Y. Hsuan, L.M. Ru, Y.J. Lun, H.H. Wen, A biomimetic extracellular matrix composed of mesoporous bioactive glass as a bone graft material, Micropor. Mesopor. Mat. 212(1) (2015) 56-65.

DOI: 10.1016/j.micromeso.2015.03.027

Google Scholar

[8] L.H. Larry., Bioactive Ceramic, Annals New York Academy of Science. 1(2) (1988) 54-71.

Google Scholar

[9] N.R. Mohamed, E.D. Delbert, B.S. Bal, Q. Fu, B.J. Steven, F.B. Lynda, P.T. Antoni, Bioactive glass in tissue engineering, Acta Biomater. 7(6) (2011) 2355-2373.

Google Scholar

[10] R.J. Julian, Review of bioactive glass: From Hench to hybrids, Acta Biomaterialia, 9(1) (2013) 4457–4486.

DOI: 10.1016/j.actbio.2012.08.023

Google Scholar

[11] G. Daniel, D. Franziska, S.B. Delia, Bioactive glasses with improved processing. Part 1. Thermal properties, ion release and apatite formation, Acta Biomaterialia. 10(10) (2014) 4465-4473.

DOI: 10.1016/j.actbio.2014.05.019

Google Scholar

[12] R.J. Julian, D.L. Peter, L.H. Larry, Hierarchical porous materials for tissue engineering, Phylosofical transaction of the royal society A. 364(1838) (2006) 263-281.

Google Scholar

[13] E. Gentlemen, C.F. Yann, J. Gavin, L. Nasrin, D.O. Matthew, G.H. Robert, M.S. Molly, The effect of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro, Biomaterials. 31(14) (2010) 3949-3956.

DOI: 10.1016/j.biomaterials.2010.01.121

Google Scholar

[14] M.N. Rasmussen, How glass change the world: the history and chemistry of glass from antiquity to the 13th century, Springer Science and Business Media, (2012).

Google Scholar

[15] M.R. Majhi, R. Pyare, S.P. Singh, Studies on preparation and characterizations of CaO-Na2O-SiO2-P2O5 bioglass ceramics substituted with Li2O, K2O, ZnO, MgO, and B2O3, International Journal of Scientific & Engineering Research. 2(9) (2011).

Google Scholar

[16] L.H. Larry, R. Niksa, B. M. Fenn, Bioactive glasses: Importance of structure and properties in bone regeneration, Journal of Molecular Structure. 1073(1) (2014) 24-30.

DOI: 10.1016/j.molstruc.2014.03.066

Google Scholar

[17] O. Peitl, D.E. Zanotto, L.L. Hench, Highly bioactive P2O5-Na2O-CaO-SiO2 glass ceramics, J. Non-Cryst. Solids. 292(1-3) (2001) 115-126.

DOI: 10.1016/s0022-3093(01)00822-5

Google Scholar

[18] D. Rohanova, R.B. Aldo, M.Y. Darmawati, D. Horkavcova, I. Brezovska, A. Helebrant, TRIS buffer in simulated body fluid distort the assessment of glass-ceramic scaffold bioactivity, Acta Biomaterialia. 7(6) (2011) 2623-2630.

DOI: 10.1016/j.actbio.2011.02.028

Google Scholar