[1]
J. Yang, S.K. Putatunda, Influence of a novel two-step austempering process on the strain-hardening behavior of austempered ductile cast iron (ADI), Mater. Sci. Eng. A. 382 (2004) 265–279.
DOI: 10.1016/j.msea.2004.04.076
Google Scholar
[2]
S. Panneerselvam, C.J. Martis, S.K. Putatunda, J.M. Boileau, An investigation on the stability of austenite in austempered ductile cast iron (ADI), Mater. Sci. Eng. A. 626 (2015) 237–246.
DOI: 10.1016/j.msea.2014.12.038
Google Scholar
[3]
A. Krzy, A. Kocha, Properties and structure of high-silicone austempered ductile iron, Arch. Foundry Eng. 14 (2014) 91–94.
DOI: 10.2478/afe-2014-0043
Google Scholar
[4]
J. Mallia, M. Grech, R.E. Smallman, Effect of silicon content on transformation kinetics of austempered ductile iron, Mater. Sci. Technol. 14 (1998) 452–460.
DOI: 10.1179/mst.1998.14.5.452
Google Scholar
[5]
S. Korichi, R. Priestner, High temperature decomposition of austempered microstructures in spheroidal graphite cast iron, Mater. Sci. Technol. 11 (1995) 901–907.
DOI: 10.1179/mst.1995.11.9.901
Google Scholar
[6]
P.P. Rao, S.K. Putatunda, Influence of microstructure on fracture toughness of austempered ductile iron, Metall. Mater. Trans. A. 28 (1997) 1457-1470.
DOI: 10.1007/s11661-997-0208-1
Google Scholar
[7]
O. Erić, M. Jovanović, L. Šidjanin, D. Rajnović, Microstructure and mechanical properties of CuNiMo austempered ductile iron, J. Min. Metall. Sect. B Metall. 40B (1) (2004) 11-19.
DOI: 10.2298/jmmb0401011e
Google Scholar
[8]
S.H. Magner, R.J. de Angelis, W.N. Weins, J.D. Makinson, A historical review of retained austenite and its measurement by X-ray diffraction, Adv. X-Ray Anal. 45 (2002) 92-97.
Google Scholar
[9]
W. Solano-Alvarez, H.F.G. Abreu, M.R. da Silva, M.J. Peet, Phase quantification in nanobainite via magnetic measurements and X-ray diffraction, J. Magn. Magn. Mater. 378 (2015) 200-205.
DOI: 10.1016/j.jmmm.2014.11.037
Google Scholar
[10]
F.L. Sicupira, M. José, R. Sandim, H.R.Z. Sandim, D. Brandão, R. Angela, Quantification of retained austenite by X-ray diffraction and saturation magnetization in a supermartensitic stainless steel, Mater. Charact. 115 (2016) 90–96.
DOI: 10.1016/j.matchar.2016.03.023
Google Scholar
[11]
É. du Trémolet de Lacheisserie, D. Gignoux, Michel Schlenker (Eds. ), Magnetism, materials and applications, Springer Science and Business Media Inc., Boston, 2005, pp.452-454.
DOI: 10.1007/978-0-387-23062-7
Google Scholar
[12]
F.Ö. Ersoy, Magnetic and structural properties of Fe-Ni-Al alloys, Istanbul Technical University, Institute of Science and Technology, Istanbul, 2011 (MSc. Thesis).
Google Scholar
[13]
K.B. Rundman, R.C. Klug, An X-ray and metallographic study of an austempered ductile cast iron, AFS Trans. 90 (1982) 499–508.
Google Scholar
[14]
S.S.M. Tavares, J.M. Pardal, J.A. de Souza, J.M. Neto, M.R. da Silva, Magnetic phase quantification of the UNS S32750 superduplex stainless steel, J. Alloys Compd. 416 (2006) 179–182.
DOI: 10.1016/j.jallcom.2005.09.006
Google Scholar
[15]
S.K. Putatunda, Influence of austempering temperature on microstructure and fracture toughness of a high-carbon, high-silicon and high-manganese cast steel, Mater. Des. 24 (2003) 435–443.
DOI: 10.1016/s0261-3069(03)00090-6
Google Scholar
[16]
N. Darwish, R. Elliott, Austempering of low manganese ductile irons - Part 2: Influence of austenitising temperature, Mater. Sci. Technol. 9 (1993) 586–602.
DOI: 10.1179/mst.1993.9.7.586
Google Scholar
[17]
V. Franetovic, M.M. Shea, E.F. Ryntz, Transmission electron microscopy study of austempered nodular iron: Influence of silicon content, austenitizing time and austempering temperature, Mater. Sci. Eng. 96 (1987) 231–245.
DOI: 10.1016/0025-5416(87)90556-8
Google Scholar