[1]
M.G. Dodin, Mathematical Models of Polymer Melt Viscosity in Shearing Flow 1 Polyethylene Melts, Int. J. Polym. Mat. Polym. Biomat. 11 (1986) 51-59.
DOI: 10.1080/00914038608080191
Google Scholar
[2]
A.V. Shenoy, S. Chattopadhyay, V.M. Nadkarni, From melt flow index to rheogram, Rheol. Acta. 22 (1983) 90-101.
DOI: 10.1007/bf01679833
Google Scholar
[3]
T. Bremner, A. Rudin, D.G. Cook, Melt flow index values and molecular weight distributions of commercial thermoplastics, J. Appl. Polym. Sci. 41 (1990) 1617-1627.
DOI: 10.1002/app.1990.070410721
Google Scholar
[4]
V. Touloupidis, C. Wurnitsch, A. Albunia, G. Galgali, Connecting Linear Polymers Molecular Structure to Viscoelastic Properties and Melt Flow Index, Macromolecular Theory Simul. 25 (2016) 392-398.
DOI: 10.1002/mats.201600028
Google Scholar
[5]
J.K. Kim, C.H. Kim, M.H. Park, Effects of Multiple Recycling on the Structure and Morphology of SEBS/PP Composites, Bull. Korean Chem. Soc. 6 (2016) 820-826.
DOI: 10.1002/bkcs.10776
Google Scholar
[6]
B. Younes, Simple Rheological Analysis Method of Spinnable-polymer Flow Properties Using MFI Tester, Indian Journal of Materials Science. 2015 (2015) 1-9.
DOI: 10.1155/2015/790107
Google Scholar
[7]
S.S. Pesetskii, B. Jurkowski, Y.M. Krivoguz, Y.A. Olkhov, Solubility of Additives: Grafting of Itaconic Acid onto LDPE by reactive extrusion II: Effect of Stabilizers, J. Appl. Polym. Sci. 81 (2001) 3439-3448.
DOI: 10.1002/app.1800
Google Scholar
[8]
T. McCollum, A Comparison of Melt Flow Index to Rheology in the Injection Molding Process, SAE Technical Paper. 1 (1999) 280-286.
DOI: 10.4271/1999-01-0280
Google Scholar
[9]
B.M. Savchenko, Assessment of the rheological characteristics of the main polycondensation polymers, Plasticheskie Massy. 4 (2013) 5-8.
Google Scholar
[10]
V.A. Gonzales, G.N. Velazquez, J.L.A. Sanchez, Polypropylene chain scissions and molecular weight changes in multiple extrusions, Polym. Degrad. Stab. 60 (1998) 33-42.
Google Scholar
[11]
A.D. Gotsis, B.L.F. Zeevenhoven, C. Tsenoglou, Effect of long branches on the rheological behaviour of polypropylene. J. Rheo. 48 (2004) 895-914.
DOI: 10.1122/1.1764823
Google Scholar
[12]
S. Moinuddin, M.M. Rashid, M.S. Rahman, High Density Polyethylene (HDPE) Waste Plastic Conversion into Alternative Fuel, J. Environ. Res. Develop. 7 (2012) 1-9.
Google Scholar
[13]
N. Vranjes, V. Rek, Effect of EPDM on Morphology, Mechanical Properties, Crystallization Behavior and Viscoelastic Properties of iPP/HDPE Blends, Macromol. Symp. 258 (2007) 90-100.
DOI: 10.1002/masy.200751210
Google Scholar
[14]
M. Majewsky, H. Bitter, E. Eiche, H. Horn, Determination of Microplastic Polyethylene (PE) and Polypropylene (PP) in Environmental Samples Using Thermal Analysis (TGA-DSC), Sci. Total Environ. 568 (2016) 507-511.
DOI: 10.1016/j.scitotenv.2016.06.017
Google Scholar
[15]
J.Z. Liang, J.N. Ness, The melt die-swell behaviour during capillary extrusion of LDPE/PP blends. Polym. Test. 17 (1998) 179-189.
DOI: 10.1016/s0142-9418(97)00034-2
Google Scholar