Thermal and Thermorheologic Characterization of Different Polyolefin Waste Fractions

Article Preview

Abstract:

In this study, melt flow index values from several household waste fractions containing mainly polypropylene and high-density polyethylene, were measured at 190 °C for polyethylene and 230 °C for polypropylene-rich fractions. High values of MFI (low shear viscosities) have been reported probably due to the lower molecular mass of the polymer waste and/or the presence of surfactant compounds on the surface of the polymer flakes. Also, by extruding the same batch in different cycles at the same temperature values, the number of processing cycles on which the polymer could be recycled has been determined.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

74-79

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.G. Dodin, Mathematical Models of Polymer Melt Viscosity in Shearing Flow 1 Polyethylene Melts, Int. J. Polym. Mat. Polym. Biomat. 11 (1986) 51-59.

DOI: 10.1080/00914038608080191

Google Scholar

[2] A.V. Shenoy, S. Chattopadhyay, V.M. Nadkarni, From melt flow index to rheogram, Rheol. Acta. 22 (1983) 90-101.

DOI: 10.1007/bf01679833

Google Scholar

[3] T. Bremner, A. Rudin, D.G. Cook, Melt flow index values and molecular weight distributions of commercial thermoplastics, J. Appl. Polym. Sci. 41 (1990) 1617-1627.

DOI: 10.1002/app.1990.070410721

Google Scholar

[4] V. Touloupidis, C. Wurnitsch, A. Albunia, G. Galgali, Connecting Linear Polymers Molecular Structure to Viscoelastic Properties and Melt Flow Index, Macromolecular Theory Simul. 25 (2016) 392-398.

DOI: 10.1002/mats.201600028

Google Scholar

[5] J.K. Kim, C.H. Kim, M.H. Park, Effects of Multiple Recycling on the Structure and Morphology of SEBS/PP Composites, Bull. Korean Chem. Soc. 6 (2016) 820-826.

DOI: 10.1002/bkcs.10776

Google Scholar

[6] B. Younes, Simple Rheological Analysis Method of Spinnable-polymer Flow Properties Using MFI Tester, Indian Journal of Materials Science. 2015 (2015) 1-9.

DOI: 10.1155/2015/790107

Google Scholar

[7] S.S. Pesetskii, B. Jurkowski, Y.M. Krivoguz, Y.A. Olkhov, Solubility of Additives: Grafting of Itaconic Acid onto LDPE by reactive extrusion II: Effect of Stabilizers, J. Appl. Polym. Sci. 81 (2001) 3439-3448.

DOI: 10.1002/app.1800

Google Scholar

[8] T. McCollum, A Comparison of Melt Flow Index to Rheology in the Injection Molding Process, SAE Technical Paper. 1 (1999) 280-286.

DOI: 10.4271/1999-01-0280

Google Scholar

[9] B.M. Savchenko, Assessment of the rheological characteristics of the main polycondensation polymers, Plasticheskie Massy. 4 (2013) 5-8.

Google Scholar

[10] V.A. Gonzales, G.N. Velazquez, J.L.A. Sanchez, Polypropylene chain scissions and molecular weight changes in multiple extrusions, Polym. Degrad. Stab. 60 (1998) 33-42.

Google Scholar

[11] A.D. Gotsis, B.L.F. Zeevenhoven, C. Tsenoglou, Effect of long branches on the rheological behaviour of polypropylene. J. Rheo. 48 (2004) 895-914.

DOI: 10.1122/1.1764823

Google Scholar

[12] S. Moinuddin, M.M. Rashid, M.S. Rahman, High Density Polyethylene (HDPE) Waste Plastic Conversion into Alternative Fuel, J. Environ. Res. Develop. 7 (2012) 1-9.

Google Scholar

[13] N. Vranjes, V. Rek, Effect of EPDM on Morphology, Mechanical Properties, Crystallization Behavior and Viscoelastic Properties of iPP/HDPE Blends, Macromol. Symp. 258 (2007) 90-100.

DOI: 10.1002/masy.200751210

Google Scholar

[14] M. Majewsky, H. Bitter, E. Eiche, H. Horn, Determination of Microplastic Polyethylene (PE) and Polypropylene (PP) in Environmental Samples Using Thermal Analysis (TGA-DSC), Sci. Total Environ. 568 (2016) 507-511.

DOI: 10.1016/j.scitotenv.2016.06.017

Google Scholar

[15] J.Z. Liang, J.N. Ness, The melt die-swell behaviour during capillary extrusion of LDPE/PP blends. Polym. Test. 17 (1998) 179-189.

DOI: 10.1016/s0142-9418(97)00034-2

Google Scholar