Synthesis and Characterization of CeO2 Doped ZrO2 Ceramics by a Simple Sol-Gel Route

Article Preview

Abstract:

It is well known that sol-gel technique is a simple method to produce nano sized ceramic powders. In this study, cerium oxide doped zirconia samples, with 10 mol%-12mol% and14mol% CeO2, were synthesized by sol-gel technique and characterized. The surface morphology, elemental composition, microstructure, and phase analysis, of the sintered CeO2 doped ZrO2 ceramics were characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDS) analysis, and X-ray diffraction (XRD) respectively. X-ray diffraction for samples sintered at 1550 °C for 4h revealed that the zirconia ceramics have a tetragonal phase structure. The addition of CeO2 can raise the content of the tetragonal phase, but the minor monoclinic phase exists even at the CeO2 content of 10 mol%. The effect of dopant concentration on the lattice parameter, average primary crystallite size and micro-strain was studied. Relative densities for CeO2 doped ZrO2 bulk ceramics varied between 95% and 99 %, depending on the CeO2 addition.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

56-60

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Houssa, V.V. Afanasev, A. Stesmans, and M.M. Heyns, Variation in the fixed charge density of SiOx/ZrO2. SiOx/ZrO2 gate dielectric stacks during postdeposition oxidation, Appl. Phys. Lett. 77 (2000) 18-85.

DOI: 10.1063/1.1310635

Google Scholar

[2] E.P. Butler, Transformation-toughened zirconia ceramics, Mater. Sci. Technol. 1 (1985) 415- 417.

Google Scholar

[3] C. J Howard, R. J Hill, B. E Reichert, Structures of the ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction, Acta. Cryst. B, 44 (1988) 116–120.

DOI: 10.1107/s0108768187010279

Google Scholar

[4] P. Li, I.W. Chen, J.E. Penner-Hahn, X-ray absorption studies of zirconia polymorphs I: local characteristic structure, Phys. Rev. B, 48 14 (1993) 10063–10073.

DOI: 10.1103/physrevb.48.10063

Google Scholar

[5] P. Li, I.W. Chen, J.P. Hahn, Effect of dopants on zirconia stabilization-an X-Ray absorption Study: II, tetravalent dopants, J. Am. Ceram. Soc., 77 5 (1994) 1281–1288.

DOI: 10.1111/j.1151-2916.1994.tb05403.x

Google Scholar

[6] N. Claussen, Strengthening strategies for ZrO2-toughened ceramics at high temperatures, Mater. Sci. Eng. 71 (1985) 23-27.

DOI: 10.1016/0025-5416(85)90203-4

Google Scholar

[7] M. Bodaghi, A. Mirhabi, M.R. Tahriri, H. Zolfonoon, M. Karimi, Mechanochemical assisted synthesis and powder characteristics of nanostructure ceramic of Α-Al2O3 at room temperature, Mater. Sci. Eng. 162 (2006) 155–161.

DOI: 10.1016/j.mseb.2009.03.021

Google Scholar

[8] T. AI, F.Y.C. Boey, X.L. Zhao, Novel synthesis of Al2O3 nano-particles by flame spray pyrolysis. J. Mater. Process. Technol. 178 (2006) 270–273.

DOI: 10.1016/j.jmatprotec.2006.04.007

Google Scholar

[9] A. Pivkina, D. Ivanov, Y. Frolov, S. Mudretsova, A. Nickolskaya, J. Schoonman, Plasma synthesized nano-aluminum powders. J. Therm. Anal. Calorim. (2006) 73-86.

DOI: 10.1007/s10973-005-7300-9

Google Scholar

[10] C. Puchner, W. kladnig, G. gritzner, mechanical properties of CeO2-doped ZrO2, J. Mater. Sci. Lett. 9 (1990) 94-96.

DOI: 10.1007/bf00722882

Google Scholar

[11] R. Madhusudhana, M.A. Sangamesha, R. Gopal Krishne Urs, L. Krishnamurthy, G.L. Shekar, synthesis and characterization of zirconia (ZrO2) by simple sol-gel route, Int. J. Adv. Res. 2 4 (2014) 433-436.

Google Scholar

[12] W. Widiyastuti, R. Balgis, F. Iskandar, K. Okuyama, Nano particle formation in spray pyrolysis under low-pressure conditions. J. Chem. Eng. Sci. 65 (2009) 1846-1854.

DOI: 10.1016/j.ces.2009.11.026

Google Scholar

[13] K.G. Kanade, J.O. Baeg, S.K. Apte, T.L. Prakash, B.B. Kale, Synthesis and characterization of nanocrystallined zirconia by hydrothermal method. J. Mats. Rese. Bull. 43 (2008) 723–729.

DOI: 10.1016/j.materresbull.2007.03.025

Google Scholar

[14] A.K. Deb, P. Chatterjee, S. Gupta, Bimodal size distribution and shape anisotropy in ball-milled nano-sized α-Al2O3. Mater. Manufacturing Processes. 21 7 (2006) 641-643.

DOI: 10.1080/10426910600611250

Google Scholar

[15] K. Kamata, T. Mochizuki, S. Matsumoto, A. Yamada, K. Miyokawa, Preparation of submicrometer A12O3 powder by gas-phase oxidation of tris (acetylacetonato) aluminum (111), J. Am. Ceram. 68 (1985) 193–194.

DOI: 10.1111/j.1151-2916.1985.tb10179.x

Google Scholar

[16] G. Duan, C. Zhang, A. Li, X. Yang, L. Lu, X. Wang, synthesis and characterization of zirconia (ZrO2) by simple sol-gel route, Nanoscale. Res. Lett. (2008) 118–122.

Google Scholar

[17] R. Mueller, R. Jossen, S.E. Pratsinis, zirconia nanoparticles made in spray flames at high production rates, J. Am. Ceram. Soc. 87 (2004) 197–202.

DOI: 10.1111/j.1551-2916.2004.00197.x

Google Scholar

[18] M. Farahmandjou, Ma Zarinkamar, Synthesis of nano-sized ceria (CeO2) particles via a cerium hydroxy carbonate precursor and the effect of reaction temperature on particle morphology, J. Ultrafine Grained and Nanostruct. Mater. 48 1 (2015) 5-10.

Google Scholar

[19] H.H. Abo-Almaged, R.M. Khattab, H.E.H. Sadek, Preparation and Characterization of ZrO2/CeO2 Ceramic Composite Synthesized by Microwave Combustion Method, OJC, 32 1 (2016) 243-251.

DOI: 10.13005/ojc/320126

Google Scholar